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ABSTRACT

Significant effort was put into big data benchmarking with focus
on end-to-end applications. While covering basic functionalities
implicitly, the details of the individual contributions to the overall
performance are hidden. As a result, end-to-end benchmarks could
be biased toward certain basic functions. Micro-benchmarks are
more explicit at covering basic functionalities but they are usually
targeted at some highly specialized functions. In this paper we
present CoreBigBench, a benchmark that focuses on the most com-
mon big data engines/platforms functionalities like scans, two way
joins, common UDF execution and more. These common function-
alities are benchmarked over relational and key-value data models
which covers majority of data models. The benchmark consists of
22 queries applied to sales data and key-value web logs covering
the basic functionalities. We ran CoreBigBench on Hive as a proof
of concept and verified that the benchmark is easy to deploy and
collected performance data. Finally, we believe that CoreBigBench
is a good fit for commercial big data engines performance testing
focused on basic engine functionalities not covered in end-to-end
benchmarks.
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1 INTRODUCTION

Big data systems continue to get attention in the industry and
academia. Those big data systems made it necessary to develop
benchmarks that assess their functionality and performance. These
benchmarks can be broken down into two types: benchmarks sim-
ulating a real world application and micro-benchmarks that focus
on specific functionality. The application benchmark starts with a
business problem and proposes a data model and workload specifica-
tions as the components of the benchmark. Examples of application
based benchmarks for big data are : BigBench [9, 11, 16, 19, 25, 28],
BigBench V2 [15] and others [1].

We believe that application driven benchmarks are important
since they mimic real life scenarios. However, they could be biased
to certain functionalities of the system since the workload is the
main driver for covering those functionalities. Another issue of
application driven benchmarks is that they are subject to special
purpose tuning that does not provide a fair comparison among
different systems. In this paper, we address the limitations of appli-
cation based benchmarks by proposing a benchmark that covers
all or the most common basic functionalities of big data systems.
The proposed benchmark is complimentary to application level
benchmarks and not intended to be a replacement for them. Our
proposal is also different from micro-benchmarks that focus on a
single operation like WordCount [6], Pi [8], Terasort [7] or a single
system functionality like TestDFSIO [2].

In this paper we propose CoreBigBench, a benchmark that fo-
cuses on assessing the performance of core (or basic) operations
of big data engines. Our focus is on system operations that are
common across big data systems and avoided system specific ones.
The most common core operations include scans, two way joins,
aggregations and window functions. In addition, two fundamental
functions: sessionize and path are included as basic operations given
their popularity in big data processing (see [9, 11, 16, 19, 25, 28], Big-
Bench V2 [15]). CoreBigBench includes these basic operations on
relational and key-value data models since these two are the most
common data sources in big data. The key-value data model also
indirectly covers a basic and fundamental late binding processing
as explained in [15].

As any benchmark, the main components of CoreBigBench is the
data model and workload. The data model leverages the data model
of BigBench V2 since it already have a well founded relational data
(sales information) and key-value semi-structured data (product
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reviews). The workload is composed of 22 queries that cover the
basic operations applied on both the relational sales data and key-
value web logs.

We implemented the CoreBigBench queries in HiveQL and exe-
cuted them on a 4 node cluster running Hive. The proof of concept
implementation and execution showed the feasibility of the bench-
mark in terms of setup and deployment.

The rest of the paper is organized as follows. Related work is
shown in section 2 and section 3 covers the details of the benchmark
data model and workload. The proof of concept implementation
in Hive is presented in section 4. Finally, we conclude the paper
through section 5.

2 RELATED WORK

There are multiple existing micro-benchmarks that focus on test-
ing single operations like WordCount [6], Pi [8], Terasort [7] or a
single system functionality like TestDFSIO [2]. Initially these micro-
benchmarks were targeting the MapReduce framework as part of
Hadoop, but later they evolved to specifically test other tools from
the big data ecosystem.

For example, HiveBench [23] is a micro-benchmark that stresses
the main Hive functionalities (aggregation and join) and was in-
cluded in the HiBench [20] micro-benchmark suite. It was later
extended with one external script query and implemented on multi-
ple other engines (RedShift, Tez, Shark and Impala) by the AMP Lab
at Berkeley [4]. However, the set of implemented queries is very
limited (only 4) and does not really cover all basic operations and
data models. HiveRunner [3] is a unit test framework used in the
Hive development. SparkBench [22] is micro-benchmark designed
for testing various Spark operations, whereas Spark-sql-perf [13]
is focused on the SparkSQL features. PigMix [5] focuses on the Pig
features. BigFUN [24] focuses on stressing the AsterixDB features.
Tempto [26] and Benchto [10] are particularly developed to test
Presto.

As mentioned above, almost every SQL-on-Hadoop engine like
Hive, Spark SQL, Presto, etc. comes with its own specific micro-
benchmark to stress test its features. The challenge is that each of
these benchmarks implement a different set of core operations that
makes comparison between the engines impossible. At the same
time there is no standardized set or specification of core operations
for big data analytical engines that can be used as a reference when
evaluating the engines.

Core DBMS operations benchmark was proposed in [12] that cov-
ered scans, aggregations, joins and other core relational operators.
In this work, we make a similar attempt to cover core operations
for big data engines.

3 BENCHMARK SPECIFICATIONS

This section details the specification of CoreBigBench which include
the data model in section 3.1 and the 22 workload queries in section
3.2. We choose the geometric mean of the execution time of the
workload queries as a metric for the benchmark.

3.1 Data Model

We leverage the data model and the scalable data generator of
BigBench V2 [15] which provide us with all the data needed for
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Figure 1: CoreBigBench Data Model

our purpose given that it has all the structured, semi-structured
and unstructured data. Also, the BigBench V2 [15] data model is
a major improvement over the original data model in BigBench
[16]. However, we re-iterate the high level aspects of the model to
help with the description of workload and proof of concept in the
subsequent sections.

Figure 1 depicts the data model we are using with six relational
tables that represent the structured part of a retailer that sells
products online and in brick and mortar stores. Users can browse
web pages of the retailer and can buy products online. Their web
access is captured for analysis and is stored in a semi-structured
key-value JSON file called "Web Log" shown in Figure 1. Users can
also write reviews about products offered by the retailer and these
reviews are maintained as unstructured text in "Product Review".

BigBench V2 also has a custom data generator that scales linearly
(web and store) sales, web logs and reviews. Users and products
scale sub-linearly and web pages are assumed to be static. The
proof of concept in section 4 provides more information on the data
definition language (DDL) of the data sources and how they are
loaded.

3.2 Workload

This section describes our 22 workload queries. Big data analytic
involve a variety of basic relational operations like scans, binary
joins, aggregations, data shuffle, etc.. Also, we treat some very
common UDFs like path analysis (like click sequence) and session-
ization (find users sessions) as core operations in our benchmark.
Relational operators and UDFs can be executed on both structured
and semi-structured data and we cover both variations as well. We
also cover unstructured data through one common UDF that does
sentiment analysis.

The first set of queries covers different variations of scans on
structured data with different selectivity’s and scans on the semi-
structured data.
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e (;: List all store sold products (items) together with their
quantity. This query does a full table scan of the store data.

e (y: List all products (items) sold together in stores with their
quantity sold between 2013-04-21 and 2013-07-03. This query
tests scans with low selectivity 10% filter.

e (3 : List all products (items) together with their quantity
sold between 2013-01-21 and 2014-11-10. Similar to Qy but
with high selectivity (90%).

e (4: List names of all visited web pages. This query tests pars-
ing the semi-structured web logs and scanning the parsed
results. The query requires only one key from the web logs.

e (s: Similar to Q4 above but returning a bigger set of keys.
This variation measures the ability of the underlying system
for producing a bigger schema out of the web logs.

The second set of queries below measures the cost of aggrega-
tions with variations on source of data and number of aggregate
expressions.

® (Q¢: Find total number of all stores sales. This query covers
basic aggregations with no grouping. The query involves
scanning store sales and to get the net cost of aggregations
we deduct the cost of Q1 from this query run time.

e (7: Find total number of visited web pages. This query re-
quires parsing and scanning the web logs and therefore it is
adjusted by subtracting Q4 from its run time.

e Qg: Find total number of store sales per product (item). This
query is adjusted similar to Qg.

® (Qo: Find number of clicks per product (item). This query also
requires parsing the web logs and can be adjusted similar to
Q7.

® Qj9: Find a list of aggregations from store sales by customer.
Aggregations include number of transactions, maximum and
minimum quantities purchased in an order. This query also
finds correlations between stores and products (items) pur-
chased by a a customer. The purpose of this query is to test
cases of a big set of aggregations.

® Q11: This query has a simple objective like Q19 but applied to
web logs. Again, the query need to be adjusted by removing
the parsing and scan cost represented by Q4.

Note that in a cluster system data need to be shuffled on the group
key to do aggregation. In the structured case, we took out this
factor by running the queries with group by on store sales versions
partitioned on the group key. For example, Qg is ran on store sales
partitioned on item ID and another version of store sales partitioned
by customer ID is used for Q19. We could not do the same for the
aggregation queries on web logs since it is difficult to partition
JSON file on a certain key.

We consider the shuffle by itself is a core operation in a big
data system running on a cluster. To get that cost, we use another
query Q12 which is the same as Qg but on store sales partitioned
by customer (different than the group key). The shuffle cost is
computed as run-time of Q12 minus run-time of Qs.

Window functions are also common in big data processing and
the next set of queries covers those core operations. The variations
include source of data and use or no use of partitioning. No parti-
tioning is a simple version of window function where the window
is applied to the whole input data set. Using partitioning requires
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similar logic to group by in the aggregate case and we thought it is
better to separate these two cases. All the queries using store sales
are adjusted by the scan cost in Q1 and similarly queries on web
logs are adjusted using Q4.

e (13: Find row numbers of store sales records order by store
id.

e (Q14: Find row numbers of web log records ordered by times-
tamp of clicks.

e Q15: Find row numbers of store sales records order by store id
for each customer. This query is similar to Q13 but computes
the row numbers for each customer individually.

® Qi6: Same as Q14 where row numbers are computed per
customer.

Binary joins are one of the core operations we consider. In a
distributed system joining two tables can be done with data shuffle
if the tables are co-located (partitioned on the join fields). If one or
both tables are not partitioned on the join column then one or both
tables need to be shuffled to perform the join. Q17 below is used to
measure the performance of co-located joins and Q13 is used for
non co-located joins.

e (17: Find all store sales with products that were reviewed.
This query is a join between the stores sales and product
reviews both partitioned on item ID.

e (Qig: Same as Q17 with different partitioning. (Table store
sales is partitioned on customer ID and no partitioning on
table product reviews.)

Big data processing use common functions for analtics and we
consider some of those as core operations as well. The most common
UDFs used in BigBench and BigBench V2 are: sessionize, path,
sentiment analysis and Kmeans. The four queries below cover the
UDF core operations.

® Q19: List all customers that spend more than 10 minutes on
the retailer web site. This query involves finding all sessions
of all users and filtering them to those which are 10 minutes
of less.

Q20: Find the 5 most popular web page paths that lead to a
purchase. This query is based on finding paths in clicks that
lead to purchases, aggregating the results and finding the
top 5.

Q21: For all products, extract sentences from its product
reviews that contain Positive or Negative sentiment and
display the sentiment polarity of the extracted sentences.
Q22: Cluster customers into book buddies/club groups based
on their in-store book purchasing histories. After model of
separation is build, report for the analysed customers to
which "group" they where assigned.

4 PROOF OF CONCEPT

The objective of our proof of concept is to show the feasibility
of CoreBigBench rather than assessing the performance of one
system over the other. On that basis we ran CoreBigBench on a
small cluster with 4 nodes with Hadoop (Cloudera CDH 5.16.2) and
Hive 1.10.
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4.1 Data Generation and Loading

We used the BigBench V2 data generator [15, 27] to generate data
with scale factor 10. Then using a HiveQL script, we created the
data model schema and loaded the six structured tables, the product
reviews and the external web logs table in Hive. The HiveQL defi-
nition for the table store sales is shown below as an example. The
field delimiter defines how the fields are separated in the text file,
generated by the data generator. The location attribute describes
the physical location of the HDFS file.

DROP TABLE IF EXISTS store_sales;
CREATE TABLE store_sales

( ss_transaction_id bigint,
ss_customer_id bigint,
ss_store_id bigint,
ss_item_id bigint,
ss_quantity int,
ss_ts string

)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '|'
STORED AS TEXTFILE LOCATION 'hdfsDataPath/user';

In some of the queries like Qg and Q19 we use variations of the
store sales table partitioned by item or by customer ID. This can be
easily done by extending the table schema with the PARTITIONED
by (key) clause.

The web logs represent the semi-structured data as JSON format
records and are stored in a file called clicks.json on HDFS. We define
an external table web logs with a single text field that holds the
JSON data. The definition of the Hive table web logs is shown below.

CREATE EXTERNAL TABLE IF NOT EXISTS

web_logs (line string)

ROW FORMAT DELIMITED LINES TERMINATED BY '\n'
STORED AS TEXTFILE

LOCATION 'hdfsPath/web_logs/clicks.json';

It is important to mention that the web logs (around 40GB) represent
the biggest chunk of data compared to the structured tables (around
51MB). The data loading times per table are also provided in Table
1.

Table 1: Data size and loading time

Scale Factor 1 Scale Factor 10
Table Data Size | Loading | Data Size | Loading
Name (sec.) (sec.)
user 256 KB 16.63 456 KB 19.19
product 39 KB 13.16 46 KB 17.33
product 6.9 MB 15.20 13 MB 13.40
review
web log 22 GB 0.02 40 GB 0.04
web page | 687 B 13.05 687 B 14.80
web sale 9.7 MB 16.10 18 MB 14.63
store sale | 10 MB 15.03 19 MB 15.20
store 6.6 KB 13.88 6.2 KB 13.67
Total: 32.03GB | 103.08 | 40.05GB | 108.2
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4.2 Query Implementation

This section describes our HiveQL implementation of the queries,
defined in section 3.2 and available in github [21]. Similar to Big-
Bench [19] and BigBench V2 [27], we chose Hive [17] for our refer-
ence implementation as the most commonly used data warehouse
engine on Hadoop. However, our goal is to keep the CoreBigBench
query definitions independent of particular engine implementa-
tion and allow syntax and engine optimizations. We divide the 22
queries into three groups: queries on structured data, queries on
semi-structured data and UDF functions. Due to space limitations
next we look at the query implementation of only a subset of the
queries.

For example, Q5 is implementing scan over the store sales table
with additional filter on timestamp that selects around 10% of all
rows. The HiveQL code is below:

SELECT ss_item_id, ss_quantity FROM store_sales
WHERE to_date(ss_ts) >= '2013-04-21"'
AND to_date(ss_ts) < '2013-07-03';

The set of queries accessing the key-value web logs in the JSON
file need to implement late binding, so that the keys are parsed at
runtime in the same way as in BigBench V2 [15, 27]. In our Hive
implementation we used the internal json_tuple user-defined table
function. It accesses the external web_logs table with the help of
lateral_view_syntax [18] and extracts keys from the JSON records.
For example, Qq4, defined in section 3.2, uses the json_tuple UDTF
to extract only the wl_webpage_name key from each JSON record:

SELECT wl_webpage_name

FROM web_logs
lateral view json_tuple(
web_logs.line, 'wl_webpage_name'
)logs as wl_webpage_name

WHERE wl_webpage_name IS NULL;

In section 3.2 we identified multiple common UDFs (sessionize,
path, sentiment analysis and Kmeans) that can be applied both on
the structured tables and the semi-structured key-value web log
data. For example, we adapt one of the BigBench queries that uses
the Kmeans algorithm as Qz. In the preparation phase of the query,
the filtered product (item) IDs are stored in a temporary table called
q22_prep_data. However, instead of using Mahout or Spark MLIib
in the implementation, we used the Facebook Hive UDF library
[14], which allowed us to call the KMeans UDF directly in HiveQL
without external library calls:

set cluster_centers=8;
set clustering_iterations=20;

SELECT kmeans(
collect_list(array(idl, id3, id5, id7, id9,
id11, id13, id15, id2, id4, id6, id8, id1e,
id14, id16)),
${hiveconf:cluster_centers},
${hiveconf:clustering_iterations}) AS out
FROM g22_prep_data;
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4.3 Experimental Results

We executed all queries implemented in HiveQL [21] on our cluster
processing data generated with scale factor 10. Again, we divided
the results in three groups: relational, key-value and UDFs.

Hive Execution Times (seconds)
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Figure 2: Queries on Structured Data

Figure 2 depicts the execution times of all queries on the struc-
tured data. We calculate the execution times for the different queries
as specified in the workload section 3.2. The geometric mean of all
query times in this group is 62.07 seconds.

Hive Execution Times (seconds)
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Figure 3: Queries on Semi-structured Data

Figure 3 depicts the execution times of the group of queries
operating on the semi-structured key-value data. Q4 performs a
simple scan operation that involves parsing all the JSON records
on the fly and extracting only the necessary attributes. Since this is
a core key-value operation, we deduct this time from all the other
group queries. The geometric mean of all query times in this group
is 525.88 seconds.

Hive Execution Times (seconds)
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Figure 4: UDF Functions

Figure 4 depicts the execution times of the group of UDF func-
tions (sessionize, path, sentiment analysis and Kmeans). Two of
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them (Q19 and Q2¢) operate on the semi-structured key-value data,
whereas the other two (Q21 and Q22) operate on the structured and
unstructured data. Therefore, we deduct the basic key-value scan
(Q4) operation time from Q19 and Q2 and respectively the simple
table scan (Q1) time from Q1 and Qa;.

5 CONCLUSIONS

In this paper we presented CoreBigBench, a benchmark that fo-
cuses on big data engines core operations like scans, two way joins,
UDF functions and more. The underlying data model was inspired
by BigBench V2 and utilizes the structured relational sales data,
the key-value web logs data and unstructured product reviews.
The benchmark consists of 22 queries applied on sales data and
key-value web logs that cover the basic functionalities. We imple-
ment CoreBigBench in Hive as a proof of concept and verified that
the benchmark is easy to deploy and stresses the desired system
features. CoreBigBench also can be used for regression testing of
commercial big data engines and can be used complimentary to an
end-to-end benchmarks like BigBench.

In the future we plan to extend the benchmark with more queries
that address data extraction, loading, transformation and cleaning
operations as well as data compression and decompression.
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