Abstract

The DataBench project aims to bridge the gap between technical and business benchmarking of Big Data and Analytics applications. The requirements discussed in this report are the result of the first analysis performed in the project on existing Big Data Benchmarking tools, from the interaction with BDVA (BIG Data Value Association) and participation in the development and analysis of results of a first questionnaire developed within BDVA, and from analysis of Big Data technology and benchmarking developed in other work packages of the project.

As a result of this analysis, an integrated set of benchmark metrics and KPIs is proposed, as an ecosystem of indicators covering Business features, Big data application features, Platform and architecture features, and Benchmark-specific features.

The deliverable discusses the use of these features in an integrated way, as a basis for a methodological integration, for the development of the DataBench Toolbox, and for relating indicators and building a KPI knowledge graph.
Deliverable D1.1 Industry Requirements with benchmark metrics and KPIs

<table>
<thead>
<tr>
<th>Deliverable D1.1</th>
<th>Industry Requirements with benchmark metrics and KPIs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work package</td>
<td>WP1</td>
</tr>
<tr>
<td>Task</td>
<td>1.1</td>
</tr>
<tr>
<td>Due date</td>
<td>31/12/2018</td>
</tr>
<tr>
<td>Submission date</td>
<td>22/11/2019</td>
</tr>
<tr>
<td>Deliverable lead</td>
<td>POLIMI</td>
</tr>
<tr>
<td>Version</td>
<td>2.0</td>
</tr>
<tr>
<td>Authors</td>
<td>POLIMI (Barbara Pernici, Chiara Francalanci, Angela Geronazzo, Lucia Polidori)</td>
</tr>
<tr>
<td></td>
<td>IDC (Gabriella Cattaneo and Helena Schwenk)</td>
</tr>
<tr>
<td></td>
<td>JSI (Marko Grobelnik)</td>
</tr>
<tr>
<td></td>
<td>ATOS (Tomás Pariente, Iván Martínez)</td>
</tr>
<tr>
<td></td>
<td>GUF (Todor Ivanov)</td>
</tr>
<tr>
<td></td>
<td>SINTEF (Arne Berre, Bushra Nazir)</td>
</tr>
<tr>
<td>Reviewer</td>
<td>IDC (Mike Glennon)</td>
</tr>
</tbody>
</table>

Keywords
Benchmarking, KPIs, indicators, modelling framework

Disclaimer
This document reflects the authors view only. The European Commission is not responsible for any use that may be made of the information this document contains.

Copyright Notice
Copyright belongs to the authors of this document. Use of any materials from this document should be referenced and is at the user’s own risk.
Table of Contents

Executive Summary .. 5
1. Introduction and Objectives .. 6
 1.1 Objectives of the Deliverable ... 6
 1.2 Research Approach ... 7
2. Overview on Big Data Benchmarking .. 10
 2.1 Benchmarks under Evaluation for the DataBench Toolbox 10
 2.1.1 Micro-Benchmarks .. 12
 2.1.2 Application Level Benchmarks ... 18
 2.2 BDVA Framework and Benchmarks ... 22
 2.3 BDVA SG on Benchmarks .. 25
3. DataBench Ecosystem of Key Performance Indicators Classifications 28
 3.1.1 The DataBench Ecosystem of Indicators ... 28
 3.2 Business Features ... 30
 3.2.1 Approach ... 30
 3.2.2 The survey ... 31
 3.2.3 Business Indicators ... 33
 3.2.4 Business KPIs Measurement ... 34
 3.2.4 Scope of BDA: the Data-driven Company ... 39
 3.3 Big Data Application Features ... 39
 3.4 Platform and Architecture Features ... 40
 3.5 Benchmark-specific Features ... 41
4. Towards an Integrated Framework ... 42
 4.1 Methodological Integration Framework .. 42
 4.2 Relating Indicators ... 45
 4.3 Features Selection for Profiling by Industry Sector 50
 4.4 DataBench Ontology and Knowledge Graph ... 52
5. Concluding Remarks ... 54

References .. 55
Annex 1 – BDVA Questionnaire SG Benchmarking (Spring 2018) 56
Annex 2 – Features in WP2 survey (October 2018) .. 61
Table of Figures

Figure 1 - Methodological Approach for integrating Technical and Business Indicators 6
Figure 2 - Benchmarks under Evaluation ...11
Figure 3 - BDV Reference Model from SRIA 4.0 (January 2018) ..23
Figure 5 - Big Data Benchmarks BDV Reference Model ..25
Figure 6 - BDA Technical and Business Benchmarking Framework30
Figure 7 - Composition of the Survey Sample by size and country32
Figure 8 - Composition of the Survey Sample by industry ..33
Figure 9 - Business Parameters ...35
Figure 10 - Business Parameters ..36
Figure 11 - DataBench Methodological Framework and Workflow42
Figure 12 - DataBench Mock-up of the start of the Registration of a new Benchmark44
Figure 13 - DataBench Mock-up of the adding Automation (Interpretation Rules)45
Figure 14 - KPI that contribute most to Business Goals ...47
Figure 15 - Contribution to current KPI improvement made by each technical measure ...47
Figure 16 - Contribution to future KPI improvements made by each technical measure48
Figure 17 - Quantitative Analysis of the Desk Analysis Use Cases49
Figure 18 - Example of profiling KPIs in the Manufacturing domain51

Table of Tables

Table 1 - DataBench Indicators Ecosystem ..28
Table 2 - Definition and Metrics of Business KPIs - I ..36
Table 3 - Definition and Metrics of Business KPIs - II ..37
Table 4 - Classification of BDA Cross-industry Use Cases ...38
Table 5 - Classification of Industry-Specific BDA Use Cases38
Table 6 - Big Data Application Features ...39
Table 7 - Platform and Architecture Features ..40
Table 8 - Benchmark-specific Features ..41
Table 9 - Comparing Indicators contained in the WP2 ..46
Executive Summary

D1.1 Industry Requirements with benchmark metrics and KPIs documents the collected industrial requirements of European significance with mappings to related vertical and horizontal benchmark metrics and KPIs.

In Task 1.1 we initiated the contacts with representatives of various industry sectors and started establishing industrial requirements based on interviews and interactions for priorities and metrics related to analysis of different use cases from industrial sectors and from the existing ICT14 and ICT15 projects. The objective is to establish an industrial user community that can provide the foundation for holistic end-to-end benchmarks that will go across all the different layers of the Big Data technology stack, according to the BDVA reference model. Existing Big Data benchmarks have primarily focused on the commercial/retail domain related to transaction processing (TPC benchmarks and BigBench) or to applications suitable for graph processing (Hobbit and LDBC – Linked Data Benchmark Council). The analysis of different sectors in the BDVA has concluded that they all use different mixes of the different Big Data Types (Structured data, Time series/IoT, Spatial, Media, Text and Graph). Industrial sector specific benchmarks will thus relate to a selection of important data types, and their corresponding vertical benchmarks, adapted for this sector. The existing holistic industry/application benchmarks have primarily been focusing on structured data and Graph data types and DataBench will in addition be focusing on the industry requirements for time series/IoT, spatial and media and text, from the requirements of different industrial sectors such as manufacturing, transport, bioeconomies, earth observation, health, energy and many others.

The requirements discussed in this report are the result of the first analysis performed in the project on existing Big Data Benchmarking tools, from the interaction with BDVA (BIG Data Value Association) and participation in the development and analysis of results of a first questionnaire developed within BDVA, and from analysis of Big Data technology and benchmarking developed in other work packages of the project.

As a result of this analysis, an integrated set of benchmark metrics and KPIs is proposed, as an ecosystem of indicators covering Business features, Big Data application features, Platform and architecture features, and Benchmark-specific features. While the actual metrics and KPIs adopted in different contests is a moving target and ever increasing, the goal of the deliverable is to create a classification of existing metrics and KPIs derived from several industry and research sources, in order to be able to put them in relation to each other and use them for as a basis for classifying industry needs and providing a support for identifying and using existing Big Data Technology Benchmarks. Definitions have been introduced to make the descriptions of the lists of indicators self-contained.

The second part of the deliverable discusses the use of these features in an integrated way, as a basis for a methodological integration, for the development of the DataBench Toolbox, and for relating indicators and building a KPI Knowledge Graph.

The updated version 2.0 of the deliverable illustrates in detail the research process followed to derive the proposed classification and the research directions for using the classification as a basis for the construction of a knowledge graph to relate existing indicators. Figures have been updated to make the document both readable online and printable. Some technical details on the DataBench Framework have been moved to Deliverable D1.2.
1. **Introduction and Objectives**

1.1 Objectives of the Deliverable

The research work conducted in WP1 has the goal to provide a reference framework for understanding the relationship between business KPIs and technical benchmarks, following the objectives for this work package defined in the DoA:

Objective 1. **Provide the BDT Stakeholder communities with a comprehensive framework to integrate Business and Technical benchmarking approaches for Big Data Technologies.**

Objective 4. **Liase closely with the BDVA, ICT 14, 15 to build consensus and to reach out to key industrial communities, to ensure that benchmarking responds to real needs and problems.**

The work presented in this deliverable has been developed during the first year of the project, taking as input also the work in other WPs, and in particular, WP2, WP3, and WP4. WP2 and WP4 are both responsible for identifying and assessing business impacts of benchmarks, both from technical and from organizational points of view. As a basis for this report, the work in WP2 has contributed a framework to investigate the main Big Data use cases implemented by industry; WP4 (D4.1), developing an in-depth case study research, has paved the way to show how the relationships between business KPIs and technical benchmarks is materialized in real cases. WP3 in D3.1 has provided a general description of the DataBench Toolbox and also discussed the role of the business and technical metrics. As shown in D3.1, WP3 has also the role of the connecting the work developed in all work packages, based on the DataBench Framework developed in WP1.

As shown in Figure 1, the classification of indicators presented in this deliverable has developed an integrated ecosystem of indicators starting from the work in the top-down analysis of Big Data Technology adoption developed in WP2, the bottom-up analysis performed in the desk analysis and interviews started in WP4 and from the analysis of the functionalities needed to retrieve and deploy benchmarks which are being studied in WP3.

![Figure 1 - Methodological Approach for integrating Technical and Business Indicators](image-url)

DataBench Grant Agreement No 780966
The present report has the main goal of presenting the results of T1.1 to create the basis for a holistic end-to-end benchmarking system for different industry sectors.

This document presents the state of the art analysis performed in T1.1:

- We considered the existing benchmarks, identifying the main analysis dimensions.
- We collaborated first with BDVA with a preliminary analysis of relevant indicators, developing an initial questionnaire for ICT14 and ICT15 Big Data Projects (see Section 2.4), and then with WP2 towards the creation of an ecosystem of indicators.

This deliverable contributes to the state of the art presenting the results of the analysis and harmonization of the different indicators in an ecosystem of indicators able to capture the different characteristics, from a business perspective to a technical view. The indicators will be the basis for further analyses and for the toolbox development.

While the structure of the DataBench ecosystem of indicators is being defined in this deliverable, we still expect possible modifications and refinements in the following phases of the project, as the detailed analyses phases continue in WP2 and WP3, and benchmarks analysis and metrics evaluation is performed in WP4 and WP5.

The document is structured as follows:

- Section 1 provides the introduction to the objectives of the deliverable.
- Section 2 contains an overview of the examined benchmarks and their principal characteristics.
- Section 3 dives into a detailed description of the indicators ecosystem for the different perspectives.
- Section 4 presents an integrated framework for using the indicators in the DataBench toolbox.
- Finally, Section 5 provides the conclusions of the document and outlines the future work on the DataBench metrics.

1.2 Research Approach

As illustrated above, in Task 1.1 the DataBench research team has the goal of providing an integrated framework for describing business and technical indicators.

In this report we do not summarize the work done in WP2, WP3, and WP4, which is summarized in the following already available deliverable and in the deliverables being developed in parallel (D2.1, D2.2, D3.1, D4.1), rather we present the main issues which emerged in the first year of the project and how the integration work evolved to the contributions presented in this deliverable.

In Task 1.1, we started to analyse existing technical benchmarks for Big Data Technologies in a systematic way. Eight of the most popular benchmarks have been analysed in this report as a basis of identifying a classification framework for all benchmarks, In Deliverable D1.2 a complete analysis of existing benchmarks is going to be provided. Two main issues emerged in the analysis of possible indicators for technology benchmarks:

1) The description of benchmarks is usually provided by their authors and providers in different formats, and the performance metrics can be different even if the goals are similar (for instance throughput is measured in a variety of ways as illustrated in Section 2). Attempts to classify benchmarks for big data systems in the literature, such as Han 2018, illustrate that benchmarks can be of different types, such as micro and macrobenchmarks,
or can be specialized to specific types of data or specific data analysis techniques. So, in order to be able to classify all benchmarks in a uniform way, we developed a common template for their description, presented in Section 2.

2) An aspect that emerged during the analysis of existing benchmarks was the importance of the adopted technology stack and of system configuration aspects.

As a consequence, in our proposed classification of indicators, we separate aspects directly related to the benchmark metrics from aspects related to the platforms on which they are deployed.

A second starting point has been the study of existing reference architectures for Big data technologies. We examined existing approaches, such as the ones developed by the NIST Big Data Public Working Group and the Big Data Value Association (BDVA). In particular, BDVA is developing a reference framework which is considering the different aspects of the technological stacks and of application characteristics of big data analysis. The following issues were identified:

1) the BDVA framework can be a basis for classifying the different aspects (horizontally and vertically, as detailed later in Section 2); however a more refined classification is needed to provide details about technologies and applications.

2) A need for further analysing benchmarking needs was identified, and together with DataBench members, a working group of benchmarking was established in BDVA and a first survey was run with BDVA members (as illustrated in Section 2). From this survey, based also on a previous survey from the Hobbit project, some requirements were investigated and further requirements emerged (as detailed in Section 4)

A third starting point was the investigation of business KPIs in DataBench from the WP2 survey and the WP4 bottom up analysis. A set of requirements emerged and the need to define a common set of indicators for all aspects considered in the project, in order to related business and technical needs. The results from this analysis resulted on the classification of business and application indicators, as illustrated in Section 3, as some initial analyses were started to test the system of indicators as illustrated in Section 4, and will further developed in next deliverables of WP2 and WP4.

From the previous analyses, the general approach which emerged was to define three main abstraction levels for classifying indicators:

1) **Points of view**: we defined features the perspectives considered from each subset of indicators, focusing on business aspects, application aspects, platform aspects and benchmarking tools.

2) **Features**: features are used to defined categories of indicators for each point of view. It has to be noted that some features may have similar names from different points of view, however, specific indicators can be defined from each point of view. One notable example is performance, which can be view a general system property a business level, an end-to-end property of an application, or may have more specific aspects when considering the performance of a platform or technology stack, or measuring the performance in a specific benchmark, in particular when microbenchmarks are considered.

3) **Indicators**: for each feature, in this report we present a list of indicators derived from the previous analyses, i.e. measurable properties for a system or subsystem. It has to be noted that some of the lists of indicators presented in this report should be
considered as a starting point and open ended. In fact, new metrics are developed continuously and in the DataBench Toolbox it will be possible to add new indicators as they emerge from the business and benchmark analyses.

4) **Metrics**: for each listed indicator a list of possible values is defined. Indicators can be categorical, in this case values indicate the belonging to a category or numerical, in this case the units of measure are provided for each indicator. Categorical indicators include indicators for which numerical values have been divided in ranges.

Further details about indicators are provided in Section 3 of the deliverable.
2. Overview on Big Data Benchmarking

In this chapter we present the state of the art on Big Data benchmarking from three different perspectives: an analysis of benchmarking tools (Sections 2.1), the reference models being developed within BDVA and their use for situating benchmarks (Section 2.2), and a first analysis of BDT (Big Data Technology) and benchmarking developed by the project within BDVA (Section 2.3).

2.1 Benchmarks under Evaluation for the DataBench Toolbox

As already described in D3.1, in WP1 in the first year the DataBench project performed a first survey of big data benchmarking tools. As a result, a set of benchmarks was selected for further in depth analysis, which is ongoing and will be reported within WP3 deliverables, and a number of dimensions for analysing each benchmark was identified and discussed, considering also the recent paper by Han et al., 2018, which discusses benchmarking for Big Data.

In particular, as illustrated in Figure 2, benchmarks are classified according to benchmark categories (Micro- and Application benchmarks), their Year of publication, name, Type and domain, and Data type. Figure 2 provides a summary of the main characteristics of each selected benchmark. In the following sections, each one is described more in detail, according to the following dimensions: Description, Benchmark type and Domain, Workload, Data type and generation, Metrics, Implementation and technology stack, Reported results and usage, Reference papers.

While the work of describing more in detail all the selected benchmarks is ongoing, it is useful to present a summary illustration of each selected benchmark in this deliverable, as the analysis work was the basis for identifying the features and indicators that are proposed in Chapter 3 and the integrated framework discussed in Chapter 4 towards providing a description of benchmarking tools in both a business- and technology-related framework.

In the following, the selected benchmarks are described in detail: in Section 2.1 Micro-benchmarks are presented, while Section 2.2. presents Application benchmarks.

In this section in the descriptions the original terms and definitions from the benchmarks are reported.
Deliverable D1.1 Industry Requirements with benchmark metrics and KPIs

<table>
<thead>
<tr>
<th>YEAR</th>
<th>NAME</th>
<th>TYPE</th>
<th>DOMAIN</th>
<th>DATA TYPE</th>
<th>METRICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>HlliBench</td>
<td>Micro-benchmark Suite</td>
<td>Micro-benchmarks, ML, SQL, Web, Graph, Streaming</td>
<td>Structured, Text, Web-Graph</td>
<td>Execution Time, Throughput</td>
</tr>
<tr>
<td>2015</td>
<td>SparkBench</td>
<td>Micro-benchmark Suite</td>
<td>Machine Learning, Graph Comput., SQL, Streaming</td>
<td>Structured, Text, Web-Graph</td>
<td>Execution Time, Throughput</td>
</tr>
<tr>
<td>2010</td>
<td>YCSB</td>
<td>Micro-benchmark</td>
<td>Cloud OLTP operations</td>
<td>Structured</td>
<td>Execution Time, Throughput</td>
</tr>
<tr>
<td>2017</td>
<td>TPCs IoT</td>
<td>Micro-benchmark</td>
<td>Workloads on typical IoT gateway</td>
<td>Structured, IoT</td>
<td>Performance (IoTps), Price (Price/IoTps), Availability (Watts/IoTps)</td>
</tr>
<tr>
<td>2015</td>
<td>Yahoo Streaming</td>
<td>Application Benchmark</td>
<td>Advertisement Analytics</td>
<td>Structured, Time-Series</td>
<td>Execution Time, Throughput</td>
</tr>
<tr>
<td>2013</td>
<td>BigBench/TPC-III</td>
<td>Application End-to-end</td>
<td>A fictional product retailer platform</td>
<td>Structured, Text, JSON logs</td>
<td>Performance metric (BBKpdm@SF + TPC-III Queries per minute throughput with Scale Factor), Price/Performance metric ($/BBKpdm@SF), System Availability Date, Energy metric (Watts/BBKpdm@SF)</td>
</tr>
<tr>
<td>2017</td>
<td>BigBench V2</td>
<td>Application End-to-end</td>
<td>A fictional product retailer platform</td>
<td>Structured, Text, JSON logs</td>
<td>Performance metric (BBKpdm@SF + TPC-III Queries per minute throughput with Scale Factor), Price/Performance metric ($/BBKpdm@SF), System Availability Date, Energy metric (Watts/BBKpdm@SF)</td>
</tr>
<tr>
<td>2018</td>
<td>AReach (Work in Progress)</td>
<td>Big Data Architecture Stack Benchmark</td>
<td>Set of different workloads</td>
<td>Structured, Text, JSON logs</td>
<td>Execution time</td>
</tr>
</tbody>
</table>

Figure 2 - Benchmarks under Evaluation

Figure 2 provides an overview of the benchmarks shortly described in the following, including also the metrics that is being used in these benchmarks.
2.1.1 Micro-Benchmarks

HiBench

1. **Description**

HiBench [Huang, S] is a comprehensive big data benchmark suite for evaluating different big data frameworks. It consists of 19 workloads including both synthetic micro-benchmarks and real-world applications from 6 categories which are: micro, ml (machine learning), sql, graph, websearch and streaming.

2. **Benchmark type and domain**

Micro-benchmark suite including 6 categories which are micro, ml (machine learning), sql, graph, websearch and streaming.

3. **Workload**

- Micro Benchmarks: Sort (sort), WordCount (wordcount), TeraSort (terasort), Sleep (sleep), enhanced DFSIO (dfsioe)
- Machine Learning: Bayesian Classification (Bayes), K-means clustering (Kmeans), Logistic Regression (LR), Alternating Least Squares (ALS), Gradient Boosting Trees (GBT), Linear Regression (Linear), Latent Dirichlet Allocation (LDA), Principal Components Analysis (PCA), Random Forest (RF), Support Vector Machine (SVM), Singular Value Decomposition (SVD)
- SQL: Scan (scan), Join (join), Aggregate (aggregation)
- Websearch Benchmarks: PageRank (pagerank), Nutch indexing (nutchindexing)
- Graph Benchmark: NWeight (nweight)
- Streaming Benchmarks: Identity (identity), Repartition (repartition), Stateful Wordcount (wordcount), Fixwindow (fixwindow)

4. **Data type and generation**

Most workloads use synthetic data generated from real data samples. The workloads use structured and semi-structured data.

5. **Metrics**

The measured metrics are execution time (latency), throughput and system resource utilisations (CPU, Memory, etc.).

6. **Implementation and technology stack**

HiBench can be executed in Docker containers. It is implemented using the following technologies:

- Hadoop: Apache Hadoop 2.x, CDH5, HDP
- Spark: Spark 1.6.x, Spark 2.0.x, Spark 2.1.x, Spark 2.2.x
- Flink: 1.0.3
- Storm: 1.0.1
- Gearpump: 0.8.1
- Kafka: 0.8.2.2
7. **Reported results and usage:**

8. **Reference papers:**

SparkBench

1. **Description**

Spark-Bench is a flexible system for benchmarking and simulating Spark jobs. It consists of multiple workloads organized in 4 categories.

2. **Benchmark type and domain**

Spark-Bench is a Spark specific benchmarking suite to help developers and researchers to evaluate and analyze the performance of their systems in order to optimize the configurations. It consists of 10 workloads organized in 4 different categories.

3. **Workload**

The atomic unit of organization in Spark-Bench is the workload. Workloads are standalone Spark jobs that read their input data, if any, from disk, and write their output, if the user wants it, out to disk. Workload suites are collections of one or more
workloads. The workloads in a suite can be run serially or in parallel. The 4 categories of workloads are:

- **Machine Learning**: logistic regression (LogRes), support vector machine (SVM) and matrix factorization (MF).
- **Graph Computation**: PageRank, collaborative filtering model (SVD++) and a fundamental graph analytics algorithm (TriangleCount (TC)).
- **SQL Query**: select, aggregate and join in HiveQL and RDDRelation.
- **Streaming Application**: Twitter popular tag and PageView

4. **Data type and generation**

The data type and generation is depending on the different workload. The LogRes and SVM use the Wikipedia data set. The MF, SVD++ and TriangleCount use the Amazon Movie Review data set. The PageRank uses Google Web Graph data and respectively Twitter uses Twitter data. The SQL Queries workloads use E-commerce data. Finally, the PageView uses PageView DataGen to generate synthetic data.

5. **Metrics**

SparkBench defines a number of metrics facilitating users to compare between various Spark optimizations, configurations and cluster provisioning options:

- Job Execution Time(s) of each workload
- Data Process Rate (MB/seconds)
- Shuffle Data Size

6. **Implementation and technology stack**

SparkBench is currently compiled against the Spark 2.1.1 jars and should work with Spark 2.x. It is written using Scala 2.11.8.

7. **Reported results and usage**

8. **Reference papers:**

- Min Li, Jian Tan, Yandong Wang, Li Zhang, Valentina Salapura:
- Dakshi Agrawal, Ali Raza Butt, Kshitij Doshi, Josep-Lluis Larriba-Pey, Min Li, Frederick R. Reiss, Francois Raab, Berni Schiefer, Toyotaro Suzumura, Yinglong Xia:
 SparkBench - A Spark Performance Testing Suite. TPCTC 2015: 26-44
1. Description

The YCSB framework is designed to evaluate the performance of different “key-value” and “cloud” serving systems, which do not support the ACID properties. The benchmark is open source and available on GitHub. The YCSB++, an extension of the YCSB framework, includes many additions such as multi-tester coordination for increased load and eventual consistency measurement, multi-phase workloads to quantify the consequences of work deferment and the benefits of anticipatory configuration optimization such as B-tree pre-splitting or bulk loading, and abstract APIs for explicit incorporation of advanced features in benchmark tests.

2. Benchmark type and domain

The framework is a collection of cloud OLTP related workloads representing a particular mix of read/write operations, data sizes, request distributions, and similar that can be used to evaluate systems at one particular point in the performance space.

3. Workload

YCSB provides a core package of 6 pre-defined workloads A-F, which simulate cloud OLTP applications. The workloads are a variation of the same basic application type and using a table of records with predefined size and type of the fields. Each operation against the data store is randomly chosen to be one of:

- **Insert**: insert a new record.
- **Update**: update a record by replacing the value of one field.
- **Read**: read a record, either one randomly chosen field or all fields.
- **Scan**: scan records in order, starting at a randomly chosen record key. The number of records to scan is randomly chosen.

The YCSB workload consists of random operations defined by one of the several built-in distributions:

- **Uniform**: choose an item uniformly at random.
- **Zipfian**: choose an item according to the Zipfian distribution.
- **Latest**: like the Zipfian distribution, except that the most recently inserted records are in the head of the distribution.
- **Multinomial**: probabilities for each item can be specified.

4. Data type and generation

The benchmark consists of a workload generator and a generic database interface, which can be easily extended to support other relational or NoSQL databases.

5. Metrics

The benchmark measures the latency and achieved throughput of the executed operations. At the end of the experiment, it reports total execution time, the average throughput, 95th and 99th percentile latencies, and either a histogram or time series of the latencies.
6. **Implementation and technology stack**

Currently, YCSB is implemented and can be run with more than 14 different engines like Cassandra, HBase, MongoDB, Riak, Couchbase, Redis, Memcached, etc. The YCSB Client is a Java program for generating the data to be loaded to the database, and generating the operations which make up the workload.

7. **Reported results and usage:**

- Kumar, S. P., Lefebvre, S., Chiky, R., & Soudan, E. G. (2014, November). Evaluating consistency on the fly using YCSB. In Computational Intelligence for Multimedia Understanding (IWCIM), 2014 International Workshop on (pp. 1-6). IEEE.

8. **Reference papers:**

- YCSB, https://github.com/brianfrankcooper/YCSB

TPCx-IoT

1. **Description**

The TPC Benchmark IoT (TPCx-IoT) benchmark workload is designed based on Yahoo Cloud Serving Benchmark (YCSB). It is not comparable to YCSB due to significant changes. The TPCx-IoT workloads consists of data ingestion and concurrent queries simulating workloads on typical IoT Gateway systems. The dataset represents data from sensors from electric power station(s).
2. Benchmark type and domain

TPCx-IoT was developed to provide the industry with an objective measure of the hardware, operating system, data storage and data management systems for IoT Gateway systems. The TPCx-IoT benchmark models a continuous system availability of 24 hours a day, 7 days a week.

3. Workload

The System Under Test (SUT) must run a data management platform that is commercially available and data must be persisted in a non-volatile durable media with a minimum of two-way replication. The workload represents data inject into the SUT with analytics queries in the background. The analytic queries retrieve the readings of a randomly selected sensor for two 30 second time intervals, TI1 and TI2. The first time interval TI1 is defined between the timestamp the query was started Ts and the timestamp 5 seconds prior to Ts, i.e. TI1 = [Ts -5 ,Ts]. The second time interval is a randomly selected 5 seconds time interval TI2 within the 1800 seconds time interval prior to the start of the first query, Ts -5. If Ts <=1810, prior to the start of the first query, Ts -5.

4. Data type and generation

Each record generated consists of driver system id, sensor name, time stamp, sensor reading and padding to a 1 Kbyte size. The driver system id represents a power station. The dataset represents data from 200 different types of sensors.

5. Metrics

TPCx-IoT was specifically designed to provide verifiable performance, price-performance and availability metrics for commercially available systems that typically ingest massive amounts of data from large numbers of devices. TPCx-IoT defines the following primary metrics:

- IoTps as the performance metric
- $/IoTps as the price-performance metric
- system availability date

6. Implementation and technology stack

The benchmark currently supports the HBase 1.2.1 and Couchbase-Server 5.0 NoSQL databases. A guide providing instructions on how to add new databases is also available.

7. Reported results and usage:

8. Reference papers:

- Raghunath Nambiar, Meikel Poess: Reinventing the TPC: From Traditional to Big Data to Internet of Things. TPCTC 2015: 1-7
2.1.2 Application Level Benchmarks

Yahoo Streaming Benchmark (YSB)

1. **Description**

 The YSB benchmark is a simple advertisement application. There are a number of advertising campaigns, and a number of advertisements for each campaign. The benchmark reads the events in JSON format, processes and stores them into a key-value store. These steps attempt to probe some common operations performed on data streams.

2. **Benchmark type and domain**

 The Yahoo Streaming Benchmark is a streaming application benchmark simulating an advertisement analytics pipeline.

3. **Workload**

 The analytics pipeline processes a number of advertising campaigns, and a number of advertisements for each campaign. The job of the benchmark is to read various JSON events from Kafka, identify the relevant events, and store a windowed count of relevant events per campaign into Redis. The benchmark simulates common operations performed on data streams:

 1. Read an event from Kafka.
 2. Deserialize the JSON string.
 3. Filter out irrelevant events (based on event_type field).
 4. Take a projection of the relevant fields (ad_id and event_time).
 5. Join each event by ad_id with its associated campaign_id. This information is stored in Redis.
 6. Take a windowed count of events per campaign and store each window in Redis along with a timestamp of the time the window was last updated in Redis. This step must be able to handle late events.

4. **Data type and generation**

 The data schema consists of seven attributes and is stored in JSON format:

 - user_id: UUID
 - page_id: UUID
 - ad_id: UUID
 - ad_type: String in {banner, modal, sponsored-search, mail, mobile}
 - event_type: String in {view, click, purchase}
 - event_time: Timestamp
 - ip_address: String

5. **Metrics**

 The reported metrics by the benchmark are:

 - Latency as window.final_event_latency = (window.last_updated_at – window.timestamp) – window.duration
• Aggregate System Throughput

6. Implementation and technology stack

The YSB benchmark is implemented using Apache Storm, Spark, Flink, Apex, Kafka and Redis.

7. Reported results and usage (reference papers)

8. Reference papers:

• Sanket Chintapalli, Derek Dagit, Bobby Evans, Reza Farivar, Thomas Graves, Mark Holderbaugh, Zhuo Liu, Kyle Nusbaum, Kishorkumar Patil, Boyang Peng, Paul Poulosky: Benchmarking Streaming Computation Engines: Storm, Flink and Spark Streaming. IPDPS Workshops2016: 1789-1792
• YSB, https://github.com/yahoo/streaming-benchmarks

1. Description

BigBench is an end-to-end big data benchmark that represents a data model simulating the volume, velocity and variety characteristics of a big data system, together with a synthetic data generator for structured, semi-structured and unstructured data. The structured part of the retail data model is adopted from the TPC-DS benchmark and further extended with semi-structured (registered and guest user clicks) and unstructured data (product reviews). In 2016, BigBench was standardized as TPCx-BB by the Transaction Processing Performance Council (TPC).

2. Benchmark type and domain

BigBench is an end-to-end, technology agnostic, application-level benchmark that tests the analytical capabilities of a Big Data platform. It is based on a fictional product retailer business model.
3. Workload

The business model and a large portion of the data model’s structured part is derived from the TPC-DS benchmark. The structured part was extended with a table for the prices of the retailer’s competitors, the semi-structured part was added represented by a table with website logs and the unstructured part was added by a table showing product reviews. The simulated workload is based on a set of 30 queries covering the different aspects of big data analytics proposed by McKinsey.

4. Data type and generation

The data generator can scale the amount of data based on a scale factor. Due to parallel processing of the data generator, it runs efficiently for large scale factors. The benchmark consists of four key steps: (i) System setup; (ii) Data generation; (iii) Data load; and (iv) Execute application workload.

5. Metrics

TPCx-BB defines the following primary metrics:

- **BBQpm@SF**, the performance metric, reflecting the TPCx-BB Queries per minute throughput; where SF is the Scale Factor.
- **$/BBQpm@SF**, the price/performance metric
- **System Availability Date** as defined by the TPC Pricing Specification

6. Implementation and technology stack

Since the BigBench specification is general and technology agnostic, it should be implemented specifically for each Big Data system. The initial implementation of BigBench was made for the Teradata Aster platform. It was done in the Aster’s SQL-MR syntax served additionally to a description in the English language - as an initial specification of BigBench’s workloads. Meanwhile, BigBench is implemented for Hadoop, using the MapReduce engine and other components like Hive, Mahout, Spark SQL, Spakr MLlib and OpenNLP from the Hadoop Ecosystem.

7. Reported results and usage (reference papers)

Deliverable D1.1 Industry Requirements with benchmark metrics and KPIs

8. Reference papers:
- BigBench, https://github.com/intel-hadoop/Big-Data-Benchmark-for-Big-Bench

BigBench V2

1. Description

The BigBench V2 benchmark addresses some of the limitation of the BigBench (TPCx-BB) benchmark. BigBench V2 separates from TPC-DS with a simple data model. The new data model still has the variety of structured, semi-structured, and unstructured data as the original BigBench data model. The difference is that the structured part has only six tables that capture necessary information about users (customers), products, web pages, stores, online sales and store sales. BigBench V2 mandates late binding by requiring query processing to be done directly on key-value web-logs rather than a pre-parsed form of it.

2. Benchmark type and domain

Similar to BigBench, BigBench V2 is an end-to-end, technology agnostic, application-level benchmark that tests the analytical capabilities of a Big Data platform.

3. Workload

All 11 TPC-DS queries on the complex structured part are removed and replaced by simpler queries mostly against the key-value web-logs. The new BigBench V2 queries have only 5 queries on the structured part versus 18 in BigBench. This change has no impact on the coverage of the different business categories done in BigBench. In addition to the removal of TPC-DS queries, BigBench V2 mandates late binding, but it does not impose a specific
implementation of it. This requirement means that a system using BigBench V2 can extract the keys and their corresponding values per query at run-time.

4. Data type and generation

A new scale factor-based data generator for the new data model was developed. The web-logs are produced as key-value pairs with two sets of keys. The first set is a small set of keys that represent fields from the structured tables like IDs of users, products, and web pages. The other set of keys is larger and is produced randomly. This set is used to simulate the real life cases of large keys in web-logs that may not be used in actual queries. Product reviews are produced and linked to users and products as in BigBench but the review text is produced synthetically contrary to the Markov chain model used in BigBench. Product reviews are generated in this way because the Markov chain model requires real data sets which limits our options for products and makes the generator hard to scale.

5. Metrics

BigBench V2 uses the same metric definition and computation as BigBench:

- \(\text{BBQpm@SF} \), the performance metric, reflecting the TPCx-BB Queries per minute throughput; where SF is the Scale Factor.
- \(\$/\text{BBQpm@SF} \), the price/performance metric
- System Availability Date as defined by the TPC Pricing Specification

6. Implementation and technology stack

Similar to BigBench, BigBench V2 is technology agnostic and can be implemented for any system. Query implementations on Hive, Mahout, Spark SQL, Spark MLlib and OpenNLP from the Hadoop Ecosystem were reported in the paper.

7. Reported results and usage (reference papers)

8. Reference papers:

- Ahmad Ghazal, Todor Ivanov, Pekka Kostamaa, Alain Crolotte, Ryan Voong, Mohammed Al-Kateb, Waleed Ghazal, Roberto V. Zicari: BigBench V2: The New and Improved BigBench. ICDE 2017: 1225-1236

2.2 BDVA Framework and Benchmarks

The Big Data Value Reference Model developed by BDVA (under the leadership of SINTEF and BDVA TF6) is being used as a foundation for the identification of different relevant areas in the context of benchmarking. The BDVA Reference Model from BDVA SRIA 4.0 is shown first, then we present and describe the extended version including domains and the placement of AI and data platforms that has been worked on during 2018.
The BDV Reference Model illustrated different technical areas that are relevant for technical solutions, standards and potentially benchmarks (Figure 3).

The BDV Reference Model has been developed by the BDVA, taking into account input from technical experts and stakeholders along the whole Big Data Value chain, as well as interactions with other related PPPs. The BDV Reference Model may serve as common reference framework to locate Big Data technologies on the overall IT stack. It addresses the main concerns and aspects to be considered for Big Data Value systems.

The BDV Reference Model distinguishes between two different elements. On the one hand, it describes the elements that are at the core of the BDVA; on the other, it outlines the features that are developed in strong collaboration with related European activities.

The BDV Reference Model shows on the top a number of relevant application domains. It also shows a logical placement of the areas of AI platforms and Data platforms. The BDV Reference Model is structured into horizontal and vertical concerns.

- **Horizontal concerns** cover specific aspects along the data processing chain, starting with data collection and ingestion, and extending to data visualisation. It should be noted that the horizontal concerns do not imply a layered architecture. As an example, data visualisation may be applied directly to collected data (the data management aspect) without the need for data processing and analytics.

- **Vertical concerns** address cross-cutting issues, which may affect all the horizontal concerns, and also relates to how different big data types cuts across the horizontal areas. In addition, vertical concerns may also involve non-technical aspects.

It should be noted that the BDV Reference Model has no ambition to serve as a technical reference structure. However, the BDV Reference Model is compatible with such reference architectures, most notably the emerging ISO JTC1 SC42 AI and Big Data Reference Architecture.

The following elements as expressed in the BDV Reference Model are elaborated in the remainder of this section:
Horizontal concerns

- **Data Visualisation and User Interaction:** Advanced visualisation approaches for improved user experience.
- **Data Analytics:** Data analytics to improve data understanding, deep learning and the meaningfulness of data.
- **Data Processing Architectures:** Optimised and scalable architectures for analytics of both data-at-rest and data-in-motion, with low latency delivering real-time analytics.
- **Data Protection:** Privacy and anonymisation mechanisms to facilitate data protection. This is shown related to data management and processing as there is a strong link here, but it can also be associated with the area of cybersecurity.
- **Data Management:** Principles and techniques for data management.
- **The Cloud and High Performance Computing (HPC):** Effective Big Data processing and data management might imply the effective usage of Cloud and High Performance Computing infrastructures.
- **IoT, CPS, Edge and Fog Computing:** A main source of Big Data is sensor data from an IoT context and actuator interaction in Cyber Physical Systems. In order to meet real-time needs it will often be necessary to handle Big Data aspects at the edge of the system. This area is separately elaborated further in collaboration with the IoT (Alliance for Internet of Things Innovation (AIOTI)) and CPS communities.

Vertical concerns

- **Big Data Types and Semantics:** The following 6 Big Data types have been identified, based on the fact that they often lead to the use of different techniques and mechanisms in the horizontal concerns, which should be considered, for instance, for data analytics and data storage: (1) Structured data; (2) Time series data; (3) Geospatial data; (4) Media, Image, Video and Audio data; (5) Text data, including Natural Language Processing data and Genomics representations; and (6) Graph data, Network/Web data and Metadata. In addition, it is important to support both the syntactical and semantic aspects of data for all Big Data types.
- **Standards:** Standardisation of Big Data technology areas to facilitate data integration, sharing and interoperability.
- **Communication and Connectivity:** Effective communication and connectivity mechanisms are necessary in providing support for Big Data. This area is separately further elaborated, along with various communication communities, such as the 5G community.
- **Cybersecurity:** Big Data often need support to maintain security and trust beyond privacy and anonymisation. The aspect of trust frequently has links to trust mechanisms such as blockchain technologies, smart contracts and various forms of encryption. Data protection has been identified as a focused area by BDVA and has thus received its own horizontal area – with an associated set of ongoing research topics and projects. It could have been grouped also under Cybersecurity, but this has been kept as a separate area also because of the independent European research areas of trust and security and the separate ECSO – European Cyber Security Organisation.
- **Engineering and DevOps for building Big Data Value systems:** This topic will be elaborated in greater detail along with the NESSI Software and Service community.
• Marketplaces, Industrial Data Platforms and Personal Data Platforms (IDPs/PDPs), Ecosystems for Data Sharing and Innovation Support: Data platforms for data sharing include, in particular, IDPs and PDPs, but also other data sharing platforms like Research Data Platforms (RDPs) and Urban/City Data Platforms (UDP). These platforms facilitate the efficient usage of a number of the horizontal and vertical Big Data areas, most notably data management, data processing, data protection and cybersecurity.

Figure 4 - Big Data Benchmarks mapped into some of the areas of the BDV Reference Model (D3.1)

Figure 4 (from D3.1) illustrates initial work, to be further developed in the project, on how the selected Big Data benchmarks we are investigating in the project can be mapped into some of the areas of the BDV Reference Model. This approach will be followed further in the DataBench Framework worked on in DataBench WP1 and WP3.

2.3 BDVA SG on Benchmarks

With the recognition of the important of benchmarking within the BDVA community and the Big Data PPP it was decided in March 2018 to establish a new Special Interest Group within the BDVA TF6 Technical Priorities called SG7 Benchmarking.

One of the early results from this group was the creation and analysis of the questionnaire that is provided in Annex 1.

The motivation and rationale for the SG7 Benchmarking group is to support benchmarking activities on Big Data and AI for the BDVA community.

A key step towards abolishing the barriers to the adoption and deployment of Big Data is to provide European companies with open benchmarking reports that allow them to assess the fitness of existing solutions for their purposes. However, achieving this goal demands:

• The deployment of benchmarks on data that reflects reality within realistic settings.
• The provision of corresponding industry-relevant key performance indicators (KPIs).
• The computation of comparable results on standardized hardware.
• The institution of an independent and thus bias-free organization to conduct regular benchmarks and provide the European industry with up-to-date performance results.
Deliverable D1.1 Industry Requirements with benchmark metrics and KPIs

It is also a motivation that the technical benchmarks will provide a foundation for the better analysis of business level benchmarks and KPIs related to the adoption and usage of big data technologies. For this there will be an interaction with Business focused TFs/SGs in BDVA.

The background for the proposed SG activity is the benchmarking framework derived from the HOBBIT project and synergies with the Big Data PPP "DataBench" project and the needs for and experiments with big data technology benchmarking in various other projects and with BDVA member organisations.

The HOBBIT project has already established a set of Big Linked Data benchmarks that is being used in practice for a number of current and activities and projects that are using linked data technologies. HOBBIT offers a set of benchmarks for each step of the Big Data Value Chain, namely Generation & Acquisition, Analytics & Processing, Storage & Curation and finally Visualization & Services.

Existing Big Data Benchmarking Communities to which DataBench will be related:

- TPC (http://www.tpc.org/) - Transaction Processing Performance Council
- SPEC (https://www.spec.org/) - Standard Performance Evaluation Corporation
- STAC (https://stacresearch.com/) - STAC Benchmark Council
- LDBC (http://www.ldbcouncil.org/) – Graph and semantic data benchmarks
- Hobbit Community (https://project-hobbit.eu)
- BigDataBench (http://prof.ict.ac.cn/)

There are also emerging communities in particular related to benchmarking of analytics/machine learning/AI that can be interacted with in the future.

There is also a logical link to the project coordination activities of Big Data PPP projects in the BDVe project, and the BDVe benchmarking activity.

The activities and expectations of this group is as follows:

Activities:

- Provide benchmarks, key performance indicators, benchmarking tools and services for the independent and repeatable benchmarking of big data technologies
- Facilitate the systematic evaluation, improvement and objective comparison of scalable big data solutions
- Generalization of knowledge from open-source benchmarking technologies
- Detect potential use cases and categories of users
- Detect potential synergies with benchmarking organizations, other big data benchmarking activities
- Requirement specifications from the association
- Producing open benchmarking reports

Expectations:

- Synergies, use case and datasets for big data benchmarks to enhance benchmarking framework and domains
- Ensure synergy of results from Big Data PPP Benchmarking projects like HOBBIT and DataBench related to the requirements and needs of the BDVA members and the Big Data community in general
- Promote the use of the HOBBIT framework for linked data, and also consider this as input for benchmarking of other big data types
• Generalized best practices, guidelines and standards to be offered as tutorials and support for the community

Initially planned tasks are as follows:

• Monitoring of European performance in Big Data technologies (e.g., through benchmarking campaigns, open challenges, dedicated benchmarking)

• Creation of high-impact whitepapers for the European industry on the current state of technology in domains of European importance

• Enhancing the community around big data benchmarking and standards

 • Revenue generation (membership strategies promoted through workshops, tutorials, surveys)

 • Identify Industrial Requirements from different industry sectors, including interviews for priorities and metrics

 • Establish vertical holistic benchmarks – end-to-end for different Industry sectors

 • Establish vertical benchmarks – Big Data Type specific

 • Establish vertical benchmarks related to Data Privacy/Security

 • Analyse and adapt horizontal benchmarks for Analytics and Processing

 • Analyse and adapt horizontal benchmarks for Data Management

This activity will relate to other BDVA TF/SG activities for the further detailing of business requirements related to economic, market and business metrics and KPIs for business performance – related also to the overall BDVA KPI measurements

The questionnaire on business, technical, and benchmarking aspects developed within the BDVA Benchmarking group was issued in March 2018 and answers were collected in the period March-May 2018. Respondents were mainly participants in European PPP Big Data projects, for a total of 36 responders, representing 37 different projects.

The analysis of this first questionnaire, synthetically reported in Appendix 1, has been one of the sources for the assessment of suitable business and technical indicators and for the development of the DataBench survey designed and then performed within DataBench WP2 in Fall 2018.
3. **DataBench Ecosystem of Key Performance Indicators Classifications**

3.1.1 **The DataBench Ecosystem of Indicators**

Table 1 - DataBench Indicators Ecosystem

In this section, we illustrate the ecosystem of indicators that has been derived in DataBench from the state of the art described in Section 2 and from the analysis activities being developed in the other work packages of the project.

As several indicators emerged from the analysis, we propose to classify them in four features, grouping relevant indicators from different points of views:
- Business features
- Big Data Application features
- Platform and Architecture features
- Benchmark-specific features.

For each feature, the specific indicators are defined, as illustrated in detail in the following sections. Table 1 - DataBench Indicators Ecosystem provides an overview of the indicators that have been selected.

For each of the indicators, further refinements can be defined:
- For each indicator, a set of possible values or categories is indicated in the following. This set can be refined and extended in the following of the project.
- More specific subclasses can be defined for each category, for instance Industry categories can be refined in more specific industry subcategories, and cross-industry Use cases can be defined, such as Fraud prevention and detection.
- For values, qualitative or quantitative values can be defined, with values or value ranges; for instance in Business Performance KPIs, for Costs the following qualitative values can be defined: Not at all important / Slightly important / Moderately important / Important / Extremely important.

In the following presentation, the focus is mainly on the features, the indicators for each feature (as illustrated in Table 1), and a description of possible values or categories for each indicator. Possible further refinements are discussed where relevant, and more detailed description are going to emerge in the following phases of the project. The definition of possible relations among indicators is discussed in Section 4.3 on the Knowledge graph to be developed in the project in WP5.
3.2 Business Features

3.2.1 Approach

In the DataBench indicators ecosystem, business features correspond to the main parameters used to identify and classify the typologies of Big Data & Analytics implementations in a business organization (use cases) and the performance metrics used to measure their business impacts (business KPIs). This methodology is presented in detail in the previous project deliverable D.2.1 Economic and Market Analysis. This chapter provides a summary description of these parameters in order to explain how they are positioned in the indicators ecosystem and how they will be used to correlate technical and business benchmarking. The description of the indicators is based on the most recent version operationalized in the business needs survey carried out by IDC in October 2018 (to be analysed in forthcoming deliverable D.2.2, due in December 2018).

![Diagram: BDA Technical and Business Benchmarking Framework](source: DataBench 2018)

As shown in Figure 5 - BDA Technical and Business Benchmarking Framework (Source: DataBench 2018), DataBench will carry out a comprehensive review of the main BDT (Big Data Technologies) benchmarks by industry and technology (top layer of the figure). The analysis will feed into the benchmarking tool designed by the project, which will determine
the optimal BDT benchmarking approaches by type of implementation (central layer of the figure). The tool will carry out the technical evaluation of benchmarks defining specific metrics. These metrics will be correlated through the use cases analysis and the case studies with their impact on the main business KPIs, such as revenues and profit growth, customer satisfaction, product and/or service innovation.

To bridge the gap between technical and business benchmarking we focus on the identification of use cases, which in this project we define as

a discretely funded effort designed to accomplish a particular business goal or objective through the application of big data technology to particular business processes and/or application domains, employing line-of-business and IT resources.

Examples of use cases are predictive maintenance in manufacturing, risk assessment in multiple industries, or industry-specific applications such as Yield monitoring and prediction in agriculture. Since a use case is based on a specific technology solution with specific technology performances, but at the same time it is easily correlated with business impacts, it provides a way to evaluate how technology requirements may influence business outcomes. Business users think in terms of use cases, not technologies: by using these concepts in its final Benchmarking handbook, DataBench will be able to satisfy business needs while at the same time maintaining its alignment with scientific and technology best practice.

3.2.2 The survey

To ground the analysis in the European economic and industrial landscape, the study team carried out in September-October 2018 a survey of a casual sample of 700 European business organizations. The size of the sample has been decided in order to allow for an adequate reliability of results (margin of error 3.5% for the whole sample) and the cost (proportional to the overall budget of the project and the relevance of this task compared to the overall workplan). The list of countries surveyed has been selected based on the following criteria:

- Geographical balance (representing all main geographical areas in the EU)
- Country size (mix of large, medium and small Member States)
- IT maturity balance (mix of MS with high, medium and low intensity IT spending)
- Share of Data Market value (the MS selected represent 87% of the European data market value in 2017\(^1\))
- Adequate coverage of the EU economy (the Member States surveyed together represent 76% of the EU GDP in 2017\(^2\))

The geographical distribution of interviews allows extrapolating results to the whole EU28 economy by leveraging clusters of countries with similar socio-economic and Big Data usage characteristics.

2. Sources: Eurostat data, EIU, EC EU growth, December 2017
The industry classification is based on Eurostat’s NACE REV. 2 code in order to be able to use statistical data on value added and other parameters as well as IDC’s Vertical Market databases. The following industries were excluded for the following reasons:

- **Government**: DataBench is focused on the private sector, government does not use the same business KPIs as the private sector, and the number of government agencies varies substantially from country to country so that Eurostat does not provide comparable statistics by number of entities.
- **Education**: a mostly public and no profit sector, very different from private industry, with vastly different dynamics of technology adoption by segment (for example, primary school vs research and university). Investigating it would have required a different type of survey and questionnaire.
- **Finally, to achieve a reasonable sample size by industry we had to eliminate another industry and our choice fell on the construction industry which according to the EDM Monitoring tool statistics is a low user of BDT, is highly fragmented and would have required high screening efforts to identify data user companies.

The survey sample by company size finally excluded micro-enterprises under 10 employees (unlikely to be advanced adopters of BDT) since the objective was to focus on enterprises having already achieved concrete benefits from the use of Big Data and Analytics.

The results of the survey will be analysed and presented in the forthcoming DataBench D.2.2 “Preliminary benchmarks of European Economic and Industrial significance”.

The final survey sample is shown in the Figure below and is adequately balanced.

![Figure 6 - Composition of the Survey Sample by size and country (Source: IDC, 700 Interviews, October 2018)](image-url)
3.2.3 Business Indicators

The business features indicators can be divided in the following main groups:

1. Classification of business users (industry and company size).
2. Type of BDA implementation (Application area, Level of Business Process integration, Level of BDA Solutions Maturity, Company approach to data management, main business goals).
3. Type of use case (cross-industry and industry-specific).
4. Business Impact KPIs.

The four groups are represented in Table 1, showing the relevant indicators grouped together. The indicators categories are presented in detail in the Figures 6 and 7 below. Groups 1, 2, 3 (Figures 9, 10 and Tables 2, 3) are semantic indicators measured through simple nominal questions (business users select the category in which they belong) to classify users. The survey results are measured as frequencies of respondents by category. Descriptive parameters can be used to measure the correlation between type of user and type of application and in turn type of business impacts. They will be used in the Benchmarking tool as a user interface to guide users to identify themselves and their type of BDA application, and in turn to look for the type of technical benchmark most relevant for them.

The **Industry** indicator contains only the types of industries the DataBench team decided to consider in the analysis (see D2.2 for details). The classification of industries is the standard one used by IDC in business surveys (aligned with NACE II codes) and is representative of the whole range of main business sectors. The public sector was excluded because of DataBench focus on private industry and the Construction industry because it is the smallest one in terms of technology investments.
Company size is a categorical indicator based on ranges of numerical values. Again the range of size classes is detailed but for the elaboration of results sub-classes were grouped together in wider categories.

The **use cases** (group 3, Tables 2 and 3) represent the link between technical solutions and business goals. The potential list is extremely long, with a long tail of specific use cases. For the sake of this project we have selected 12 cross-industry use cases and 23 industry-specific use cases, representing the most frequent and potentially impactful typologies identified so far by IDC research.

3.2.4 Business KPIs Measurement

The business KPIs (group 4) are different from the others because they are impact indicators. They represent 7 categories of business factors which have been selected on the basis of business literature and IDC research of technology vendors and users as the most relevant to measure the impacts of innovative technology investments on business performance. For example, these factors are most often used to evaluate the results of pilots of new technology investments. Tables 2 and 3 below provide a definition of each of the business impact KPI as defined in the DataBench survey.

The business KPIs definitions are based on business and marketing literature, but these definitions have been simplified and operationalized to allow measurement through business surveys. This is one of several options for the measurement of technology business impacts, chosen for its respondence to the objectives of this project: the need to estimate industrial benchmarks of business impacts, valid for the European industry and differentiated by sector and company size.

Among other methodologies, the most precise and well-known are CBA (cost-benefit analysis) or ROI (Return on Investment), where these KPIs are measured through the collection of objective data about a specific business process or pilot investment. This requires the collection of historical data about the business (to define the baseline for the improvement) and to develop specific assumptions about the causality links between the technology investment and the impacts on revenues, profits, costs, time efficiency, and so forth, controlling for other contributing factors. This type of analytic data collection is possible only for business case studies, not large-scale surveys. Another option is to analyse the data from companies’ financial accounts comparing investments, revenues and profits over a certain period of time: this is possible only when having access to several years’ data of financial information, which means it is usually applicable only to large public companies. This approach is suitable to measure the impact of large technology investments ex-post, with a few years lag time, and is not well-suited to investigate the early impacts of innovative technologies and especially the impacts on SMEs as was the case of this project.

Since IDC is focused on emerging technologies and market forecasting, we have developed a methodology based on business surveys which allows to collect data about the overall average impacts of technology investments based on companies’ own evaluations. Since companies do not carry out investments without an economic or business rationale, these data have a sound basis even though they are technically a result of the opinions of respondents. To make sure that these opinions are valuable and factually based, we employ several methods including:

- Careful selection of the role and responsibility of the survey respondent (who must have the relevant knowledge we are interested in);
Deliverable D1.1 Industry Requirements with benchmark metrics and KPIs

- Careful quality control of survey data, discarding incoherent or unbelievable answers as well as careful management of the survey itself (for example rotating answering options so that there is no bias because of their ranking);
- Statistical elaboration techniques discarding outliers and extreme values, by checking maximum and minimum data points;
- Long experience in survey management and reliance on experienced and well-known interviewers.
- Comparative analysis of the resulting data with literature and other sources about business impacts of technology innovation.

All these methods have been employed in this project to define and collect data about the business impacts of BDA and calculate industrial benchmarks. The tables 2 and 3 below provide details about each KPI, its metrics and the measurement results. WP2 deliverables report on this research work, from D.2.1 Methodology, D.2.2 Preliminary industrial benchmarks, D.2.3 Analysis of users’ needs and D.2.4 Industrial Benchmarks where the KPIs are validated and finalised.

Figure 8 - Business Parameters: Industry, Application area, Level of Business Process Integration

<table>
<thead>
<tr>
<th>INDUSTRY</th>
<th>APPLICATION AREA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>Customer service and support</td>
</tr>
<tr>
<td>Banking, insurance, other financial services</td>
<td>Engineering</td>
</tr>
<tr>
<td>Business or professional services (IT excl.)</td>
<td>Research and development (R&D)</td>
</tr>
<tr>
<td>IT services</td>
<td>Product innovation (new business initiatives)</td>
</tr>
<tr>
<td>Healthcare</td>
<td>Maintenance and logistics</td>
</tr>
<tr>
<td>Manufacturing process</td>
<td>Marketing</td>
</tr>
<tr>
<td>Manufacturing discrete</td>
<td>Finance</td>
</tr>
<tr>
<td>Retail trade</td>
<td>HR & legal</td>
</tr>
<tr>
<td>Wholesale trade</td>
<td>Sales</td>
</tr>
<tr>
<td>Telecommunications</td>
<td>Product management</td>
</tr>
<tr>
<td>Media</td>
<td>Governance, risk and compliance</td>
</tr>
<tr>
<td>Transport and logistics</td>
<td>IT and data operations</td>
</tr>
<tr>
<td>Utilities</td>
<td></td>
</tr>
<tr>
<td>Oil & gas</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPANY SIZE</th>
<th>LEVEL OF BUSINESS PROCESS INTEGRATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 to 49 employees</td>
<td>High (where there is real time integration with business processes for eg real time fraud detection)</td>
</tr>
<tr>
<td>50 to 249 employees</td>
<td>Medium (where there are mixed levels of integration with business processes eg propensity models available as part of business processes but not scored in real time)</td>
</tr>
<tr>
<td>250 to 999 employees</td>
<td>Low (for eg where big data reports and dashboards are processed in a batch environment and made available for the following day)</td>
</tr>
<tr>
<td>500 to 999 employees</td>
<td></td>
</tr>
<tr>
<td>1,000 to 2,499 employees</td>
<td></td>
</tr>
<tr>
<td>5,000 or more employees</td>
<td></td>
</tr>
</tbody>
</table>
Level of BDA Solutions Maturity

Currently using
- Piloting or implementing
- Considering or evaluating for future use
- No use and no plans

Business KPI

Increase of the number of products/services launched
- Customer satisfaction
- Business model innovation
- Revenue and profit growth
- Product/service quality
- Time efficiency
- Cost reduction

Business Goal

Better understand customer behavior and expectations
- Optimize our pricing strategies and go-to market programs
- Product, services or program improvement and innovation
- Improve our understanding of the market and our competitors
- Improve and optimize our business processes and operations
- Improve our facilities and equipment design, maintenance and utilization
- Improve our operational, fraud and risk management
- Implement better regulatory compliance and financial controls

Approach to Data Management

Structured and transactional data is captured and curated within a data warehouse or operational data store
- Structured and unstructured data from different locations, including on-premise and in the cloud, is captured and curate
- Enterprise wide repositories or data lakes are used to capture, organize, and curate data from multiple sources and forms
- Real-time data (for example: log files, social media and IoT data) is streamed and used alongside other contextual data
- The Big Data platform is available/exposed to external customers/partners and developers to build and extend data-driven

Figure 9 - Business Parameters: Maturity, Business KPI, Business Goals, Approach to Data Management

<table>
<thead>
<tr>
<th>KPI</th>
<th>Definition</th>
<th>Data Source</th>
<th>Survey Question</th>
<th>Metrics</th>
</tr>
</thead>
</table>
| **Revenues Increase** | Increase of the company revenues thanks to the adoption of BDA | DataBench business survey | q6a. In percentage terms, what is the actual benefit realised (alt: what benefit do you expect to realise) from the use of Big Data and analytics for the following business KPIs? | Absolute value: % increase calculated as:
 - Mean
 - Median
 - Minimum
 - Maximum
 Benchmark: the median value was selected as most representative (D.2.4) |
| **Profit Increase** | Increase of the company profit thanks to the adoption of BDA | | | |
| **Cost Reduction** | Reduction of process costs thanks to the introduction of BDA | | | |

Table 2 - Definition and Metrics of Business KPIs - 1
<table>
<thead>
<tr>
<th>KPI Improvement of:</th>
<th>Definition</th>
<th>Data Source</th>
<th>Survey Questions</th>
<th>Metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time efficiency</td>
<td>Efficient use of time in business processes: this is often used as a simple proxy for productivity improvements in IDC surveys</td>
<td>DataBench business survey</td>
<td>Q7. To what extent has your organization’s deployment of Big Data and analytics impacted [IF QS6=3 display: will your organization’s deployment of Big Data and analytics be impacted by] the ability to attain the following business KPIs?</td>
<td>Q7 = Share of respondents by answer; Benchmark: share of respondents with moderate or high increase (D.2.4)</td>
</tr>
<tr>
<td>Product/service quality</td>
<td>Product/service features corresponding to users’ implied or stated needs and impacting on their satisfaction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Customer satisfaction</td>
<td>Measure of Customers’ positive or negative feeling about a product or service compared to their expectations (Philip Kotler)</td>
<td></td>
<td>Q8. For the following business KPIs please estimate what percentage of expected improvement will be linked to the adoption of Big Data and analytics by 2020?</td>
<td>Q8 = Share of respondents by answer; Benchmark: Average rating on a scale from 1 to 5 based on the following scores: • Less than 5% = 1 • 5%-9% = 2 • 10%-24% = 3 • 24%-49% = 4 More than 50% = 5 (D.2.4)</td>
</tr>
<tr>
<td>Business model innovation</td>
<td>Novel ways of mediating between companies’ product and economic value creation. IN IDC surveys, most often used as a transformation of the revenue sources of a new product/service (for example moving from traditional sales to subscription models)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3 - Definition and Metrics of Business KPIs - II
Deliverable D1.1 Industry Requirements with benchmark metrics and KPIs

Table 4 - Classification of BDA Cross-industry Use Cases (Source: IDC User Needs Survey, 2018)

<table>
<thead>
<tr>
<th>Use Case</th>
<th>Industries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price optimization</td>
<td>All</td>
</tr>
<tr>
<td>New product development</td>
<td>All</td>
</tr>
<tr>
<td>Risk exposure assessment</td>
<td>All</td>
</tr>
<tr>
<td>Risk exposure assessment</td>
<td>All (excluding Agriculture)</td>
</tr>
<tr>
<td>Customer profiling, targeting, and optimization of offers</td>
<td>Banking, Insurance, Other Finance, Business or Professional services, IT services, Retail Trade, Telecommunications, Media, Utilities</td>
</tr>
<tr>
<td>Customer scoring and/or churn mitigation</td>
<td>Banking, Insurance, Other Finance, Telecommunications, Utilities</td>
</tr>
<tr>
<td>Fraud prevention and detection</td>
<td>Banking, Insurance, Other Finance, Business or Professional services, IT services, Healthcare, Telecommunications</td>
</tr>
<tr>
<td>Product & Service Recommendation systems</td>
<td>Banking, Insurance, Other Finance, Business or Professional services, IT services, Retail Trade, Telecommunications, Media</td>
</tr>
<tr>
<td>Automated Customer Service</td>
<td>Banking, Insurance, Other Finance, Business or Professional services, IT services, Healthcare, Retail Trade, Telecommunications, Media</td>
</tr>
<tr>
<td>Supply chain optimization</td>
<td>Agriculture, Manufacturing Process and Discrete, Retail Trade, Wholesale Trade, Transport & Logistics, Utilities, Oil & Gas</td>
</tr>
<tr>
<td>Predictive Maintenance</td>
<td>Agriculture, Manufacturing Process and Discrete, Wholesale Trade, Transport & Logistics, Utilities, Oil & Gas</td>
</tr>
<tr>
<td>Inventory and service parts optimization</td>
<td>Agriculture, Manufacturing Process and Discrete, Wholesale Trade, Transport & Logistics, Oil & Gas</td>
</tr>
</tbody>
</table>

Table 5 - Classification of Industry-Specific BDA Use Cases (Source: IDC User Needs Survey, 2018)

<table>
<thead>
<tr>
<th>Industry</th>
<th>Specific use case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>Precision agriculture, Yield monitoring and prediction, Field mapping & crop scouting, Heavy equipment utilization</td>
</tr>
<tr>
<td>Banking</td>
<td>Cyberthreat & detection</td>
</tr>
<tr>
<td>Insurance</td>
<td>Usage based insurance</td>
</tr>
<tr>
<td>Other financial services</td>
<td>Cyberthreat & detection</td>
</tr>
<tr>
<td>Business or professional services</td>
<td>Social media analytics</td>
</tr>
<tr>
<td>Healthcare</td>
<td>Illness/disease diagnosis and progression, Personalized treatment via comprehensive evaluation of health records, Patient admission and re-admission predictions, Quality of care optimization</td>
</tr>
<tr>
<td>Manufacturing processes</td>
<td>Smart warehousing, Asset management, Quality management investigation</td>
</tr>
<tr>
<td>Manufacturing discrete</td>
<td>Smart warehousing, Asset management, Quality management investigation, Connected vehicles optimization</td>
</tr>
</tbody>
</table>

DataBench Grant Agreement No 780966

38
3.2.4 Scope of BDA: the Data-driven Company

Finally, based on the combination of technology and business indicators, we aim to provide a synthetic assessment of how the use of Big Data and Analytics impacts the organization business strategy. The assumption to be tested is that a higher level of integration of BDT in business process is correlated with a higher level of benefits, that is higher positive business impacts.

The suggested classification is based on the following stages of development of the implementation of BDT in the organization:

- Ad-hoc BDT implementations optimizing decision-making tasks;
- Implementation of data oriented digital transformation processes: these are the activities that lead an enterprise to be able to adopt a certain BDT and to properly manage data in digital format, which represents a pre-condition to build data-driven business processes. Taking full advantage of a certain BDT implies certain degrees of maturity for the target enterprise and its major resources.
- Implementation of data-driven business processes: organizational processes that include data management activities targeted to data analytics and their integration within other operational business processes.

The validity and usefulness of these BDT implementation stages will be fine-tuned and validated by DataBench particularly through the case studies.3

3.3 Big Data Application Features

The goal of the Big Data Application features is to describe the exact application environment and its requirements that can be later used in the process of selecting a suitable Big Data benchmark. The features depict properties of the system and implementation properties typical for the top application layer of the architecture. The indicators listed in Table 4 emerged from the results of the WP2 Survey, from the BDVA framework and from the analysis of end-to-end benchmarks.

<table>
<thead>
<tr>
<th>Data Size</th>
<th>Data Type</th>
<th>Workload Type</th>
<th>Analytics Type</th>
<th>Machine Learning Approach</th>
<th>Application-Level Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gigabytes</td>
<td>Text data</td>
<td>Online transaction processing (OLTP)</td>
<td>Descriptive</td>
<td>Deep Learning</td>
<td>Cost</td>
</tr>
<tr>
<td>Terabytes</td>
<td>Graphical or linked data</td>
<td>Online analytical processing (OLAP)</td>
<td>Diagnostics</td>
<td>Kernel Methods</td>
<td>Throughput</td>
</tr>
<tr>
<td>Petabytes</td>
<td>Temporal or temporal data</td>
<td>Hybrid transaction/analytical processing (HTAP)</td>
<td>Predictive</td>
<td>Tree-based Methods</td>
<td>End-to-end Execution Time</td>
</tr>
<tr>
<td>Exabytes</td>
<td>Media (images, audio, video)</td>
<td>Time series (including IoT)</td>
<td>Prescriptive</td>
<td>Hybrid Machine Learning</td>
<td>Data quality (Accuracy/quality/data quality/versatility)</td>
</tr>
<tr>
<td></td>
<td>Structured text</td>
<td></td>
<td></td>
<td>Bayesian and Neural Networks</td>
<td>Availability</td>
</tr>
</tbody>
</table>

Table 6 - Big Data Application Features

- **Data Size**: measures the data volume of the application data. Categorical values based on numerical ranges
- **Data Type**: depicts the type of data that the application is processing and storing.
- **Workload Type**: describes the typical application operations in terms of processing.
- **Analytics Type**: outlines the main analytics category of the application.

3 More details in D.2.1 Economic and Market Analysis
• **Machine Learning Approach:** outlines the main approach and algorithms in case of machine learning usage. Categorical indicator. This is an open-ended list of Machine Learning approaches emerging from the benchmark analysis and from the WP2 survey. New categories will emerge during the project and will be added in the toolbox. Links among categories and subcategories will be studied within the knowledge graph (see Section 4.3).

• **Application-level Performance:** describes the metrics used to measure and monitor the application performance. The performance at this level is measured end-to-end for the application. Also in this case the list of indicators emerged from the analysis and is open ended as new indicators may emerge in other end-to-end benchmarks.

3.4 Platform and Architecture Features

The Platform and Architecture features describe in detail the system backend architecture on which the application is hosted including the processing, storage and management components. Providing details for all features will help to perform a more precise selection process.

<table>
<thead>
<tr>
<th>Storage Type</th>
<th>Platform Type</th>
<th>Processing Type</th>
<th>Architecture Patterns</th>
<th>Platform-level Performance Metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distributed File System Databases/ERDBMS</td>
<td>Batch</td>
<td>Data Preparation</td>
<td>Execution time/ Latency</td>
<td>Availability</td>
</tr>
<tr>
<td>NoSQL</td>
<td>Stream</td>
<td>Data Pipelining</td>
<td>Throughput</td>
<td>Durability</td>
</tr>
<tr>
<td>NewSQL</td>
<td>Interactive/(near) Real-time</td>
<td>Data Lake</td>
<td>Cost</td>
<td>CPU and Memory Utilization</td>
</tr>
<tr>
<td>In-Memory Time Series Databases</td>
<td>Iterative/In-memory</td>
<td>Data Warehouse</td>
<td>Energy consumption</td>
<td>Accuracy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lambda Architecture</td>
<td>Precision</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rappa Architecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unified Batch and Stream architecture</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7 - Platform and Architecture Features

• **Storage Type:** describes the type of system used to persistently store the application data. The given list is open ended and new categories will be added during the classification of benchmarks in the toolbox.

• **Platform type:** indicates the type of platform in terms of category or particular technology stack. The given list is open ended and new categories will be added during the classification of benchmarks in the toolbox.

• **Processing Type:** describes what type of processing is supported by the platform.

• **Architecture Patterns:** depicts the type of architecture pattern implemented in the system backend and hosting the application. The given list is open ended and new categories will be added during the classification of benchmarks in the toolbox.

• **Platform-level Performance Metrics:** describes the metrics used to measure and monitor the platform and architecture performance. The list includes indicators used to measure system performance.
3.5 Benchmark-specific Features

The Benchmark-specific features extend the Application, Platform and Architecture features defined above to depict a more precise view of the user requirements for a Big Data benchmark. The specific features focus on typical Big Data benchmark characteristics covering the input and output data, execution settings as well as metrics.

- **Benchmark Type**: identifies the category of the benchmark
- **Execution Environment**: describes the environment settings in which the benchmark is typically executed.
- **Configuration**: defines particular configuration properties of the benchmark.
- **Benchmark References**: links and references to existing best practices, how-tos, and experimental papers using the benchmark as well as links to the benchmark home page.
- **Input Data Format**: defines the input data file formats used by the benchmark.
- **Output Data Format**: defines the resulting output data produced and reported by the benchmark.
- **Benchmarking Aspect**: defines the stress test characteristics for which the benchmark can be applied.
- **Benchmark Data Type**: specifies the type of data used by the benchmark.
- **Benchmarking Performance Metrics**: defines the type of metrics that the benchmark measures and reports to the user. For the analysis of benchmarks, it emerges that for each metric different benchmarks might use different units of measures, so each indicator might have several possible measures associated to it.
4. Towards an Integrated Framework

4.1 Methodological Integration Framework

DataBench Framework & Workflow

Figure 10 - DataBench Methodological Framework and Workflow

Figure 10 shows a schema of processes intended to illustrate different elements of the tooling support to be provided in DataBench to different set of users. A single user may have different roles, as identified in D3.1, initially the following:

- **Benchmarking Providers**: Organization that owns a particular benchmark. They can be the actual developers of the benchmark or the organizations that maintain them. These users can register and update their benchmarks.
- **Technical Users**: Users that would like to search and potentially execute a technical benchmark. This includes the possibility of searching, downloading, executing and giving the results of the execution back to the Toolbox.
- **Business Users**: Users that would like to search and understand the business value of specific big data solutions. These users would not need to run technical benchmarks, but rather search for similar cases, business indicators, etc.
- **DataBench Admin**: People in charge of the administration of the Toolbox.

There are several processes depicted in Figure 10. On the left-hand side of the figure, the three boxes represent the registration process of two different kinds of benchmarks:

- The registration of data related to business-oriented big data benchmarks. The idea of the component located in the upper left corner of the figure ("New Business Benchmark Samples Registration") is to capture domain and industry specific best practices and blueprints associated to concrete business KPIs.
The registration of technical benchmarks. The two remaining components on the left represent the way the DataBench Toolbox will capture the necessary metadata and features about technical benchmarks to enable the search and recommendation processes (“New Big Data Benchmark Registration/Update” component), and to enable the automation of the deployment and the interpretation of the results of the execution of the benchmarks (“Integrating new Big Data Benchmark” component). Note that the registration of the automation provided by the second component is optional, in the sense that it requires the provision of deployment recipes and rules of interpretation of the results of the execution of the benchmarks which could prove a difficult task for some of the benchmarks analysed so far. However, the aim in DataBench is to automate as many as possible technical benchmarks, so the documentation of the process to integrate the automation will be also a key part for future extensibility to other benchmarks.

The components in the center of the Figure 10 show the full process from searching to executing and visualizing the results of benchmarks. The processes related to the DataBench Toolbox have been introduced in deliverable D3.1, while the validation of metrics is going to be introduced in deliverable D5.1. This process is divided into the following steps:

- **Search and Recommendation System:** The upper central box shows the steps to define the search criteria a user could pose to the system with the aim to select a benchmark that suits their needs. Based on those criteria (technical, business, application or platform features as explained in Section 3), the system will offer a set of potential benchmarks that could fulfil the user needs, as well as associated material (blueprints, best practices in sectors, etc.) that might facilitate the decision of the selection of the right benchmark.

- **The DataBench Toolbox setup:** The middle central box (in green in Figure 10) represents the process of deploying and enabling the execution either in cloud or in-premise of the selected benchmark. This could only happen if the registration of that benchmark provided the necessary recipes to allow the deployment. After the execution, the results of the benchmark will be sent back to the Toolbox for post-processing.

- **The validation of the metrics:** This process will allow in certain cases the matching of the technical metrics with business insights or KPIs. The results of the benchmarks will be then visualized and compared to others, giving the user a clear added-value in comparison with the mere technical results that the execution of a technical benchmark may provide.

At the point of writing this document, partners are in the process of agreeing and prototyping the look and feel of the different processes listed in this section. In order to do so, the figures below show mock-ups to describe the registration process, showing examples of how different features listed in Section 3 could be established. These mock-ups are intended as examples of the type of interactions the users registering benchmarks may have, and therefore serve the purpose of illustration of the processes described in this document before starting the actual implementation of the DataBench Toolbox.

For example, Figure 11 shows the beginning of the registration of a new benchmark as the actual realization of the first steps of the component “New Big Data Benchmark Registration/Update” listed in Figure 10. Users performing the registration of the new
benchmark, typically the “Benchmarking Provider” or the “DataBench Admin” on their behalf, will go through several web forms to provide the necessary features to describe the benchmark for further search and recommendation purposes. In this particular case, Figure 11 shows some business features such as the industries for which the benchmarks are intended, sectors, degree of maturity, etc. These features may apply or not to a particular benchmark, but overall the idea is to enable the categorization of the new benchmark with the complete set of features to enable search and further recommendation.

![DataBench Mock-up of the start of the Registration of a new Benchmark](image)

The example process continues until all different types of features listed in section 3 have been established for the new benchmark. At that point, the initial registration is finished and the benchmark is searchable by end users of the Toolbox.

However, if the benchmark provider wishes to go a step further and automate the process of deploying and enabling the execution of the benchmark from the Toolbox, they should continue providing the rules of interpretation of the results and providing the Ansible recipes for deployment. An example of interpretation rule definition is shown in Figure 12. In this case, the user selects one of the technical output results of the benchmark, in this case “throughput”, and associates a certain threshold to qualify the output in a measurable way. In the example shown in Figure 12, a throughput higher than 100 means in this particular benchmark that the throughput is considered high in a scale ranging from 1 (very low) to 5 (very high). The use of normalized scales for specific benchmarks will therefore allow having a way of comparing heterogeneous results from different benchmarks.
After defining the interpretation rules for all the output results and the recipes for deployment, the benchmark is ready to be automated from the Toolbox. Technical users may therefore use the DataBench search and recommendation engines to find, deploy and execute their benchmarks, and provided the results back to the Toolbox. These results will be validated and processed giving the possibility to be compared with others and derive business insights as added value to both Technical and Business users.

4.2 Relating Indicators

In this section, we delineate possible directions to relate indicators, based on the performed analyses. In particular, we focus on the survey performed in Fall 2018 in WP2, on the analysis of different benchmarks, and on the ongoing desk analysis.

Considering the set of indicators presented in Section 3, some initial considerations may be drawn on the sets of indicators used in the WP2 survey and in the benchmark analysis. As illustrated in Table 9, indicators in the business features category are typical of the business and market analysis of WP2 and Benchmark-specific features are used in the description of the benchmarks. The other features, both for Big Data Applications indicators, and for Platform and architecture features, are common to both analyses. This overlap allows performing further analyses to relate not only business indicators among themselves, as shown for instance in Figure 13, which shows the KPIs that contribute most to business goals, but also the contribution to business KPIs improvement related to technical measures, illustrated in Figure 14 and Figure 15.
Table 9 - Comparing Indicators contained in the WP2 Survey and in Benchmark Descriptions

The following Figures shows elaborations based on the DataBench survey results, where we asked two specific questions: What is percentage of expected improvement for these specific KPI’s, and What are the top technical performance metrics used to measure your BDA environment?

Figure 14 illustrates for each business goal, the relative impact of KPIs (based on separate achievement scores for each KPI). The red rows in the Figure highlight the business KPIs with the lower impacts on the respective business goals; yellow and orange mean a medium impact; green means a high impact. Overall the range of scores is positive (all the scores are around or over score 3 which means an achievement of at least 5-9% of improvement and above). This
means that the adoption of BDA does contribute to the priority business goals of respondents. But there are clear variations by type of KPI.

<table>
<thead>
<tr>
<th>Main Business Goals</th>
<th>Business KPIs</th>
<th>Better understand customer behavior and expectations</th>
<th>Optimize our pricing strategies and go-to-market programs</th>
<th>Product, services, or program improvement and innovation</th>
<th>Improve our understanding of the market and our competitors</th>
<th>Improve and optimize our business processes and operations</th>
<th>Improve our facilities, and equipment design, maintenance, and utilization</th>
<th>Improve our operational, fraud, and risk management</th>
<th>Implement better regulatory compliance and financial controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost reduction</td>
<td>3.11</td>
<td>3.19</td>
<td>3.37</td>
<td>3.23</td>
<td>3.29</td>
<td>3.19</td>
<td>3.22</td>
<td>3.20</td>
<td></td>
</tr>
<tr>
<td>Time efficiency</td>
<td>3.76</td>
<td>3.84</td>
<td>3.91</td>
<td>3.87</td>
<td>3.84</td>
<td>3.83</td>
<td>3.83</td>
<td>3.92</td>
<td></td>
</tr>
<tr>
<td>Revenue growth</td>
<td>4.03</td>
<td>4.06</td>
<td>3.98</td>
<td>4.09</td>
<td>4.03</td>
<td>3.99</td>
<td>4.11</td>
<td>4.06</td>
<td></td>
</tr>
<tr>
<td>Customer satisfaction</td>
<td>4.08</td>
<td>4.20</td>
<td>4.05</td>
<td>4.09</td>
<td>4.16</td>
<td>4.08</td>
<td>4.06</td>
<td>4.11</td>
<td></td>
</tr>
<tr>
<td>Business model innovation</td>
<td>3.60</td>
<td>3.64</td>
<td>3.67</td>
<td>3.71</td>
<td>3.65</td>
<td>3.65</td>
<td>3.65</td>
<td>3.78</td>
<td></td>
</tr>
<tr>
<td>Number of new products/services</td>
<td>3.71</td>
<td>3.78</td>
<td>3.78</td>
<td>4.01</td>
<td>3.88</td>
<td>3.80</td>
<td>3.83</td>
<td>3.94</td>
<td></td>
</tr>
</tbody>
</table>

Figure 13 - KPI that contribute most to Business Goals

Source: Cross-Elaboration on DataBench survey, Questions 2 and 8. KPIs average rating (see table below). Color code by row: Red lowest contribution for the specific business goal, Yellow intermediate, Green highest contribution to specific business goal

<table>
<thead>
<tr>
<th>Improvement Range (%)</th>
<th>KPIs Rating Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 5%</td>
<td>1</td>
</tr>
<tr>
<td>5%-9%</td>
<td>2</td>
</tr>
<tr>
<td>10%-24%</td>
<td>3</td>
</tr>
<tr>
<td>24%-49%</td>
<td>4</td>
</tr>
<tr>
<td>More than 50%</td>
<td>5</td>
</tr>
</tbody>
</table>

Figure 14 - Contribution to current KPI improvement made by each technical measure

Source: Cross-Elaboration on DataBench survey, Questions 18 and 8. KPIs average rating (see table above for scoring range). Ranking by rating from highest contribution to lowest contribution score.
The relative contribution to each KPI from the technical measures is shown in Figure 14, where each KPI is assessed separately. The data is from the survey of 700 respondents, where we asked two specific questions: What is percentage of expected improvement for these specific KPI's, and What are the top technical performance metrics used to measure your BDA environment?

This figure shows the specific improvement in each KPI associated with the technical measure. It is clear from the figure that in most cases Product or Service Quality is the biggest contributor to performance improvement, with the exception of Cost (e.g., $ per transaction), and here, surprisingly, it is customer satisfaction that makes the biggest contribution to improving cost. In most cases – except for Accuracy, Quality, and Veracity – the contribution to the KPI improvement made by cost reduction is notably lower than the other technical measures.

![Figure 15 - Contribution to future KPI improvements made by each technical measure](image)

Source: Cross-Elaboration on DataBench survey, Questions 18 and 8. KPIs average rating (see table above for scoring range). Ranking by rating from highest contribution to lowest contribution score.

The outlook for future expectations of technical measures’ contributions to KPI’s is not much different for the leading technical measures, although for the cost KPI customer satisfaction drops slightly its contribution to the KPI, and time efficiency becomes a bigger contributor to KPI success.

These weights give a matrix used to map between the technical measures and the KPI’s, and choose appropriate measures and benchmarks for specific use cases.

The ecosystem of KPI classification and, consistently, the outcome of WP2 questionnaire represent also the basis for the activities in WP4. In WP4 we are performing an extensive desk analysis, mapping BDT use cases from the literature based on the DataBench framework. The complete list of use cases of the extensive desk analysis together with their mapping on the DataBench framework can be found at the following link: http://78.47.228.66/ecis2019/dimensions_use_cases.htm. The analysis involves industrial use cases and use cases presented by EU ICT 14-15 projects. This extensive data analysis is based on public information with a comprehensive approach to include a broad set of industries and applications of BDTs. The extensive data analysis seems to confirm that the high level of abstraction of the DataBench framework presented in this deliverable is useful to gather methodological findings from the desk analysis. As an example, as summarized in Figure 16, from a business perspective the desk analysis highlighted customer satisfaction among the top relevant indicators in most industries, with a particular emphasis in
industries that provide products/services to consumers, e.g., telco/media, healthcare, banking/insurance/financial services, retail trade/wholesale trade. Conversely, other KPIs appear more strictly related to a specific industry. As an example, cost reduction is the most relevant indicator in banking/insurance/financial services and utilities/energy, whereas revenue growth is the pivotal KPI in retail trade/wholesale trade, and transport/logistics and healthcare appear to be focused on product/service quality. Moreover, some industries are more concerned with innovation, e.g., utility/energy and agriculture.

![Figure 16 - Quantitative Analysis of the Desk Analysis Use Cases](image)

From a technical perspective, the desk analysis indicated that tables and structured data tend to be present in all industries, although they are predominant in selected industries, such as banking/insurance/financial services. On the contrary, selected industries, including manufacturing, transport/logistics, utilities/energy have specific use cases addressing geospatial and temporal data created by IoT devices in monitoring and automation processes. Other types of data, such as graph and linked data, are present in all the industries that perform social media analysis.

Overall, from a data analysis perspective it emerged the need to process a growing amount of data by exploiting predictive/prescriptive methods with real-time constraints, thus making evident the quest for a structured approach able to tackle technical challenges and to support technical choices pivotal to enable business benefits. Moreover, these preliminary findings suggested the relevance of providing blueprints by industry to further
4.3 Features Selection for Profiling by Industry Sector

Another type of analysis is presented in Figure 17, where we present the profile obtained for the Manufacturing domain, selecting the indicators that have high confidence in the domain, i.e., for which most of the respondents in the sectors indicated an interest. This analysis was performed using the BDVA S5 Benchmarking survey results. Respondents were mainly participants in European PPP Big Data projects, for a total of 36 responders, representing 37 different projects.

The questionnaire is synthetically reported in Appendix 1.

MANUFACTURING
7 RESPONDENTS

QUESTIONS
D10. What are you Big Data benchmarking goals/plans?
D11. Which aspects of Big Data are you benchmarking or planning to benchmark? (ref. BDV Reference Model)
D12. What kind of data are you using/planning to use?
D15. What type of Data Storage (Storage/Querying/Discovery) are you benchmarking/considering?
D16. What is the most important type of Data Processing in your platform?
D17. What types of data problems are you tracking?
D18. What types of machine learning approaches do you typically use?
D19. Which modelling techniques do you typically use?
D20. What type of data are stored and processed in your system/platform? (ref. BDV Reference Model types)
D21. What are the technical key performance metrics that you (want to) measure in your system/platform/service?
D22. Which of the following qualitative features are important for your application/platform?

ANSWERS

D10. What are you Big Data benchmarking goals/plans?

Check whether implementation fulfills given business requirements and specifications 81%

D11. Which aspects of Big Data are you benchmarking or planning to benchmark? (ref. BDV Reference Model)

- Data analytics 100%
- Data management 71%
- Data processing 71%

D12. What kind of data are you using/planning to use?

- Real data 36%
- Hybrid 36%

D15. What type of Data Storage (Storage/Querying/Discovery) are you benchmarking/considering?

- Graph Stores 67%
- NoSQL 67%

D16. What is the most important type of Data Processing in your platform?

Interactive/(near) Real-time processing 71%

D17. What types of data problems are you tracking?

- Descriptive 71%
- Predictive 86%
D18. What types of machine learning approaches do you typically use?
- Supervised: 86%

D19. Which modelling techniques do you typically use?
- Deep learning: 67%

D20. What type of data are stored and processed in your system/platform? (ref. BDV Reference Model types)
- Time series including IoT data: 86%

D21. What are the technical key performance metrics that you (want to) measure in your system/platform/service?
- End-to-end execution time (Runtime): 100%
- Throughput: 67%

D22. Which of the following qualitative features are important for your application/platform?
- Fault-Tolerance: 71%

Figure 17 - Example of profiling KPIs in the Manufacturing domain (elaboration of the initial questionnaire with BDVA SG on benchmarking, Pernici et al., 2018)
4.4 DataBench Ontology and Knowledge Graph

The information collected at various stages of the project will be organised in a form to be easily accessible, structured and interoperable with other semantic knowledge resources. For that purpose we plan to organise the information into the DataBench ontology which will serve the data organised in the Knowledge Graph allowing flexible data schemas and to be scalable for operations like search, aggregation, and in particular interlinked with other relevant global semantic vocabularies and resources.

In the following paragraphs we are describing constituents of the DataBench ontology and knowledge graph, its planned implementation and required characteristics.

We envision the information that is going to be considered in the project to be coming from the following sources (but not limited to, in the case of necessity to expand):

- Questionnaires – structured question-answer pairs
- Interviews – structured questions and unstructured answer textual descriptions
- Data science algorithms descriptions – structured descriptions of algorithms used in data science; descriptions will be aligned with an ontology of machine learning and broader data science related algorithms (as a starting point we plan to use W3C Machine Learning Schema https://www.w3.org/community/ml-schema/)
- Data meta description – for that purpose we will use the DCAT ontology (Data Catalog Vocabulary - https://www.w3.org/TR/vocab-dcat-2/).
- Data science tools descriptions – structured descriptions of tools used in data science; since such an ontology doesn’t exist, we plan to develop ‘minimal viable ontology’ satisfying the project needs
- Dataset statistical descriptions – structured descriptions of characteristics of datasets which are commonly used in data science in broader in the area of data analytics; there are several approach how to structure the domain of data characteristics and during the course of the project we plan to construct a viable solution for such a schema satisfying the needs of the project; a major objective will be to automate the process of extracting such characteristics from datasets
- Benchmarking tools description – structured descriptions of tools to perform benchmarking with particular focus on the DataBench platform, but being also able to describe benchmarking tools from the similar initiatives (including related H2020 projects)
- Benchmarking experiments outcomes – each benchmarking experiment will measure several KPIs (like time, memory, quality of results, business), which will be recorded and stored in a structured way
- Benchmarking experiments machine learning models – aggregate models built from ‘Benchmarking experiments outcomes’ data by machine learning algorithms; the purpose of models is to derive analytical understanding on how data science algorithms and tools perform under different datasets and parametrizations.

The above listed types of information will be stored in a form of a knowledge graph, where corresponding ‘knowledge fragments’ will be aligned with either external ontologies/schemas or ontologies/schemas will be constructed within the project (due to a non-existence of appropriate pre-existing semantic resources). For specific technical concepts, where pre-existing semantic resources exists, we will align with the

The ontology will be designed with the Protégé ontology editor (https://protege.stanford.edu/).

The data will be stored conceptually in the Knowledge Graph structure, whereas for the implementation of the actual storage will use one of the proven and scalable graph databases such as Neo4J (https://neo4j.com/), ArangoDB (https://www.arangodb.com/) or similar. The final decision, which graph database to be used for DataBenchKG, will be taken at the start of the implementation phase.

An important property, to be satisfied by DataBenchKG, is aggregation and analytics on the top of the collected data. Most of the data sources (listed above) stored in the DataBenchKG are not of a very large scale and with some limited temporal dynamics, and therefore we don’t expect major issues with managing and storing the data. For these data sources we expect for the graph database engine to support operations such as search and basic statistics. The most intensive data source will be coming from the ‘Benchmarking experiments outcomes’ (generated by the tools from WP5), where we expect tens of thousands (or more) experiments to be performed and stored in the graph data engine, with the specific purpose to aggregate and model the data with machine learning algorithms. For the purpose to be scalable and easily accessible, we might use for this dataset an alternative data storage engine, likely a NoSQL database MongoDB or relational database PostgreSQL. More detailed description of the data intensive part of DataBenchKG is described in D5.1.
5. Concluding Remarks

The present report is based on the results of DataBench during the first year of the project, and it collects and harmonizes the indicators that emerged from several points of view in the analysis of the market and case studies and from a classification of benchmarking tools, developed in the following activities:

- WP2 Economic, Market and Business Analysis, and in particular the design of the survey developed in the work package and the analysis of the results.
- WP3 DataBench Toolbox, and the Definition of the DataBench Toolbox architecture in Task 3.1.
- WP5 Technical Evaluation using the DataBench Toolbox, and the initial evaluation of DataBench metrics.

The resulting set of indicators, classified in the following four features: Business features, Big Data Application features, Platform and Architecture features, Benchmark-specific features. Such an ecosystem of indicators is going to be validated in the next months both in the first release of the toolbox, and in the further data collection, data analysis, and validation activities. The first level indicators described in this report will also be further refined in more specific classes and the relations among them will be studied in detail.
References

DataBench Deliverable D2.1, Economic, Market and Business Analysis Methodology, April 2018

DataBench Deliverable D2.2, Preliminary Benchmarks of European and industrial significance, December 2018 (in preparation)

DataBench Deliverable D3.1, DataBench Architecture, July 2018

DataBench Deliverable D4.1, Data Collection Plan, August 2018

DataBench Deliverable D5.1, Initial Evaluation of DataBench Metrics, December 2018 (in preparation)

Annex 1 – BDVA Questionnaire SG Benchmarking (Spring 2018)

Benchmarking Big Data Benchmarks

By answering this questionnaire, you will help gathering evidence on the use of Big Data technologies and benchmarks. With this survey, we aim to assess how companies could benefit from Big Data benchmarking. The results will be used to build a bridge between technical and business benchmarking. All results will be shared with registered respondents.

What is your current role/position?
- Data Engineer
- Software/Application Developer
- DevOps (development and operations)
- System Administrator
- System Architect
- Data Analyst
- Data Scientist
- Other:

Are you participating in EU research projects? If yes, which ones?
Your answer:

Are you affiliated with an organization? If yes, which one?
Your answer:

Which societal challenges do you target?
- SC1: Health, Demographic Change and Wellbeing
- SC2: Food Security, and the Bioeconomy
- SC3: Secure, Clean and Efficient Energy
- SC4: Smart, Green and Integrated Transport
- SC5: Climate Action, Environment, Resource Efficiency and Raw Materials
- SC6: Inclusive, Innovative and Reflective Societies
- SC7: Secure Societies
- None
- Other:

What are your Big Data application domains?
- Energy
- Financial Services
- Manufacturing
● Construction
● Food Agriculture
● Retail, Wholesale
● Professional Services
● Transport Services
● Public Administration
● Healthcare
● Education
● Telecom, IT, Media
● Utilities
● Other:

Do you use business indicators to measure the performance of your big data & analytics initiatives?
● We do not use them
● We target revenue growth
● We target margin growth
● We target cost reduction
● We target time efficiency
● We target customer satisfaction
● We target product/service quality
● Other:

Are your big data & analytics in real-time and integrated with business processes?
● Yes
● No
● Not yet, but will be in the near future
● I don’t know

In which role do you perform benchmarking?
● Technology provider, vendor or system integrator
● Academic researcher
● End user
● None
● Other:

Are you currently evaluating software using benchmarking technologies?
● HOBBIT Benchmarking Platform
● HiBench
● SparkBench
● BigBench / TPCx-BB
● Yahoo! Cloud Serving Benchmark (YCSB) / TPCx-IoT
Deliverable D1.1 Industry Requirements with benchmark metrics and KPIs

- Kaggle
- GERBIL
- No
- Other:

What are your big data benchmarking goals/plans?
- Comparing different architectures (e.g., Lambda vs. Data Lakes)
- Comparing different software technologies and stacks (e.g., MapReduce, Spark, Flink)
- Comparing different implementations of a functionality (e.g., Spark Scala, Java, R, PySpark)
- Check whether an implementation fulfills given business requirements and specifications
- Other:

Which aspects of Big Data are you benchmarking or planning to benchmark? (ref. BDV Reference Model)
- Data Storage (Storage/Querying/Discovery – SQL, NoSQL, Column, Key-value, Raster ...)
- Data Management (Extraction, Annotation, Enrichment, Curation, Link/Integration/Federation)
- Data Protection
- Data Processing (Batch, Stream, Interactive/(near) Real-time and Iterative/In-memory processing)
- Data Analytics (Descriptive, Diagnostic, Predictive, Prescriptive) (Machine Learning: Supervised, Un-supervised, Reinforcement learning), Deep Learning
- Data Visualization
- Complete domain application/system/solution
- Other:

What kind of data are you using/planning to use?
- Synthetic data
- Real data
- Hybrid (mix of real and synthetic) data
- Other:

Which dataset sizes do you target in your application(s)?
- In Megabytes
- In Gigabytes
- In Terabytes
- In Petabytes
- Other:
Are you willing to be a member of our benchmarking community? Goodies include the results of this survey. If yes, please add your email address below.

What type of Data Storage (Storage/Querying/Discovery) are you benchmarking/considering?

- Relational Database Management Systems
- SQL
- NoSQL
- Column Stores
- Key-Value Stores
- Graph Stores
- In-memory Stores
- Other:

What is the most important type of Data Processing in your platform?

- Batch processing
- Stream processing
- Interactive/(near) Real-time processing
- Iterative/In-memory processing
- Other:

What types of data problems are you tackling?

- Descriptive
- Inferential
- Predictive
- Prescriptive
- Other:

What types of machine learning approaches do you typically use?

- Unsupervised
- Semi-supervised
- Supervised
- Active

Which modelling techniques do you typically use?

- Deep Learning
- Kernel Methods
- Tree-based Methods
- Latent Factor Models
- Clustering
- Other:
What types of data are stored and processed in your system/platform? (Ref. BDV Reference Model types)

- Business intelligence – Tables/Schema
- Structured text – Genomics
- Graphs and Linked Data
- Time series incl. IoT data
- Geospatial or temporal
- Text (incl. natural language)
- Media (images, audio or video)
- Other:

What are the technical key performance metrics that you (want to) measure in your system/platform/service?

- End-to-end execution time (Runtime)
- Throughput
- Specific Performance Metrics (i.e. QphH(TPC-H query-per-Hour)@Size(data size), BBQpm(Big Bench Query-per-minute)@SF (Scale Factor)
- Cost ($/QphH@Size, $/BBQpm@SF)
- Energy Consumption (Watts/QphH(TPC-H query-per-Hour)@Size)
- Accuracy (Precision, Recall, F-measure, Mean Reciprocal Rank)
- Availability (in %)
- Other:

Which of the following qualitative features are important for your application/platform?

- Fault-tolerance
- Privacy
- Security
- Governance - Managing the data lifecycle
- Veracity - Defines data accuracy, how truthful it is, any imprecision or uncertainties.
- Variability - Defines the different interpretations that a certain data can have when put in different contexts.
- Data Quality - Quality of data in terms of coverage, time representation, finely measured, etc.
- Correctness
- Other:

What are the key technologies that you are using in your big data infrastructure? For example, Big Data platforms such as Cloudera, HortonWorks, MapR or others offering Hadoop distributions, Spark, Flink, Storm or similar for batch and stream processing, Hive, Spark SQL, Presto or similar for SQL capabilities on top of Hadoop.
Annex 2 – Features in WP2 survey (October 2018)

Screening Questions

QS1. In which country is your organization located?

QS2. Approximately how many people are currently employed (full-time or part-time) in your organization in your country, including all branches, divisions, and subsidiaries?

QS3. Which of the following best describes your position within your organization?

QS4. What is your role in decisions regarding your organization’s use or potential plans for using Big Data and analytics? [...].

QS5. Which of the following industries best describes your organization’s primary business? Please make sure you are referring to your company, not your specific role within the organization.

QS6. What is the status of your organization’s use of Big Data and analytics technologies and solutions today?

Core Questions – Business Alignment and KPIs

Q1. In which of the following areas has your company implemented or does it plan to implement Big Data and analytics initiatives? [Choose all that apply]

Q2. Which of the following business goals are driving adoption or consideration of Big Data and analytics in your organization? [Choose all that apply]

Q3. How important is the ability to benchmark the business impact of your organization's Big Data and analytics efforts?

Q4. How important are the following business Key Performance Indicators (KPIs) for measuring the impact of your organization’s Big Data and analytics efforts? [...]?

Main benefits

Q5. What level of benefits has your organization achieved so far (alt: does your organisation expect to achieve) from the use of a Big Data and analytics environment?

Q6a. In percentage terms, what is the actual benefit realised (alt: what benefit do you expect to realise) from the use of Big Data and analytics for the following business KPIs? [...]?

Q6r. Please try to estimate the benefit (alt: expected benefit) realized from the use of Big Data and analytics for the following business KPIs.

Q7. To what extent has your organization’s deployment of Big Data and analytics impacted (alt: will your organization’s deployment … be impacted by) the ability to attain the following business KPIs?

Q8. For the following business KPIs please estimate what percentage of expected improvement will be linked to the adoption of Big Data and analytics in 2020?

Q8a. What was your organization’s revenue in <COUNTRY> last year, in <CURRENCY>??

Use Cases

Q9. If we look at the following specific Big Data and analytics business use cases, what is your organization’s position on each of these?

Technical Questions

Q10. How would you describe the level of business process integration currently achieved within your Big Data and analytics environment?

Q11. Do you believe that supplying capabilities such as real-time integration with business processes will improve Big Data and analytics’ impact on your organization and/or community?

Q12. To what extent is your Big Data and analytics environment linked or aligned with other technology investments?

Q13. In data storage terms, what measurement is typically used to gauge the size of your Big Data and analytics environment(s)?

Q14. What type of data storage do you currently use for your Big Data and analytics environment? [Choose all that apply]

Q15. What types of data are stored and processed in your Big Data environment? [Choose all that apply]
<table>
<thead>
<tr>
<th>Q17.</th>
<th>To what extent are the following types of data processing paradigms important in your Big Data environment?</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Q18.</th>
<th>What are the top technical performance metrics currently used to measure your Big Data and analytics environment? How about in two years from now - what will you start using? Choose all that apply.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Q19.</th>
<th>What is the current state of your organization's use of these different analytic techniques?</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Q20.</th>
<th>Looking at Big Data skills requirements, in which areas — if any — do you have difficulty finding enough resources? [Choose all that apply]</th>
</tr>
</thead>
</table>