
9. April 2018

Exploratory Analysis of Spark

Structured Streaming
[Work-in-Progress]

Todor Ivanov todor@dbis.cs.uni-frankfurt.de

Jason Taaffe jasontaaffe@yahoo.de

Goethe University Frankfurt am Main, Germany

http://www.bigdata.uni-frankfurt.de/

mailto:jasontaaffe@yahoo.de
http://www.bigdata.uni-frankfurt.de/

9. April 2018

Motivation

• Increasing popularity and variety of Stream Processing Engines such as Spark Streaming,

Flink Streaming, Samza, etc.

• Growing support for stream SQL features such as Spark Structured Streaming, Flink SQL,

Samza SQL, etc.

Research Objectives

• Evaluate the features of Spark Structured Streaming

• Prototype a benchmark for testing stream SQL based on BigBench

• Perform experiments validating the prototype benchmark and exploring the Spark

Structured Streaming capabilities/features

2PABS 2018, Berlin, Germany, April 9

9. April 2018

Spark Structured Streaming (introduced in Spark 2.0)

● Structured Streaming provides fast, scalable, fault-tolerant, end-to-end

exactly-once stream processing without the user having to reason about

streaming.

● built and executed on top of the Spark SQL engine

● use the Dataset/DataFrame API in Scala, Java, Python or R to express

streaming aggregations, event-time windows, stream-to-batch joins, etc

● Micro-batch processing mode

○ processes data streams as a series of small batch jobs thereby

achieving end-to-end latencies as low as 100 milliseconds and

exactly-once fault-tolerance guarantees

● Continuous processing mode (introduced in Spark 2.3)

○ achieve end-to-end latencies as low as 1 millisecond with at-

least-once guarantees (future work)

3PABS 2018, Berlin, Germany, April 9

Source: https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html

https://spark.apache.org/docs/latest/sql-programming-guide.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html

9. April 2018

Spark Structured Streaming (2)

“The key idea in Structured Streaming is to treat a live data stream as a table that is being

continuously appended. [...] Every data item that is arriving on the stream is like a row being

appended to the Input Table.” [https://spark.apache.org/docs/latest/structured-streaming-

programming-guide.html]

“... at any time, the output of the application is equivalent to executing a batch job on a prefix of

the data.” [https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html].

4PABS 2018, Berlin, Germany, April 9

https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html

9. April 2018

Trigger Execution Metrics

5PABS 2018, Berlin, Germany, April 9

9. April 2018

Structured Streaming Micro-Benchmark

● Popular streaming benchmarks such as HiBench, SparkBench and Yahoo Streaming

Benchmark

→ do not stress test the streaming SQL capabilities of engines.

● Idea: use BigBench [1,2] as a base for new streaming SQL micro-benchmark

● Simplified 2 phase benchmark methodology

○ Phase 1: generate and prepare the data

○ Phase 2: execute the continuous workloads and validate the results

6PABS 2018, Berlin, Germany, April 9

E
x

e
c

u
ti

n
g

 t
h

e
 s

tr
e

a
m

in
g

 S
Q

L

m
ic

ro
-b

e
n

c
h

m
a

rk

Phase 1 - Data Preparation

Phase 2 - Workload
Execution

Generate data for scale
factor

Split data into file chunks
simulating stream on disk

Execute streaming queries

Store results and metrics

9. April 2018

Workloads

● 5 queries were chosen for the evaluation

● 4 of them are from BigBench V2 and represent relevant streaming questions

○ Q05 : Find the 10 most browsed products in the last X seconds.

○ Q06 : Find the 5 most browsed products that were not purchased across all users

(or only specific user) in the last X seconds.

○ Q16 : Find the top ten pages visited by all users (or specific user) in the last X

seconds.

○ Q22 : Show the number of unique visitors in the X seconds.

● 1 new query performing simple monitoring operation:

○ Qmilk : Show the sold products (of a certain product or category) in the last X

seconds.

7PABS 2018, Berlin, Germany, April 9

9. April 2018

Implementation and Limitations

● Q05, Q16 and Qmilk were successfully implemented.

○ Spark code: https://github.com/Taaffy/Structured-Streaming-Micro-Benchmark

● Q06 - performs join operations on two streaming datasets, which was not supported

○ however, the latest version supports stream-stream joins

(https://databricks.com/blog/2018/03/13/introducing-stream-stream-joins-in-apache-

spark-2-3.html)

● Q22 - uses a distinct operation, sorting operation (Order By) and Limit keyword, which

were not supported at the time of implementation

8

var web_logs_05 = web_logsDF

.groupBy ("wl _ item_id").count()

.orderBy ("count")

.select ("wl _item_id" , "count")

.where ("wl _ item _ id ␣ IS ␣ NOT ␣ NULL ")

var web_logs_16 = web_logsDF

.groupBy (" wl_webpage_name ") . count ()

.orderBy ("count ")

.select (" wl_webpage_name " , " count ")

.where (" wl_webpage_name ␣ IS ␣ NOT ␣ NULL "

)

var web _ sales _ milk = web_salesDF

.groupBy ("ws _ product _ id") . count ()

.orderBy ("ws _ product_ id")

.select ("ws _ product _ id " , " count ")

.where ("ws_product_ID ␣ IS ␣ NOT ␣ NULL “)

PABS 2018, Berlin, Germany, April 9

https://github.com/Taaffy/Structured-Streaming-Micro-Benchmark
https://databricks.com/blog/2018/03/13/introducing-stream-stream-joins-in-apache-spark-2-3.html

9. April 2018

Benchmarking Setup

● Hardware Setup:

○ Intel Core i5 CPU 760 @3.47GHz x 4

○ 8 GB RAM & 1 TB Hard Disk

● Software

○ Ubuntu 16.04 LTS OS

○ Java Version 1.8.0_131 & Scala Version 2.11.2

○ Apache Spark 2.3 - Standalone with Default parameters

9PABS 2018, Berlin, Germany, April 9

9. April 2018

Data Preparation and Execution

● Generate data with the BigBench V2 data generator for scale factor 1

○ web logs consisting of web clicks in JSON format (around 20GB)

○ web sales structured data (around 10MB)

● Web logs with variable file sizes ranging from 50MB to 2 GB were created.

● For every file size, 10 files were created with subsequent timestamps to simulate a stream

of 10 data files.

● Q05 and Q16 were tested with varied web logs files.

● Qmilk was tested 10MB web sales file copied 10 times to ensure 10 files could be

streamed successfully.

10PABS 2018, Berlin, Germany, April 9

9. April 2018

Performed Experiments

• Query and File Size Combinations (total of 31 combinations)

11PABS 2018, Berlin, Germany, April 9

9. April 2018

Exploratory Analysis

● Warmup run for all experimental executions taken into account. (excluded from

measures)

● After the second execution the average query latency becomes constant in all 3 cases.

12PABS 2018, Berlin, Germany, April 9

9. April 2018

Average Processing Times

● 3 groups of queries:

○ single executions - Q05 and Q16

○ parallel pair executions - Q05, Q16 and Qmilk

○ triple parallel executions - Q05, Q16 and Qmilk

● In general, it can be said that the more queries are run in parallel and the larger the file

sizes used, the longer these take, to be completed and the more resource intensive

they are.

13PABS 2018, Berlin, Germany, April 9

9. April 2018

Other Observations

● Average Latency increased by more than 200% between the 50MB and 2 GB file sizes.

● Comparing single query latency to triple query latency, it increased 2 to 3-fold.

● CPU utilization was the highest at the 50MB level and decreased every time the file size

was increased.

● The JAVA heap size increased for larger file sizes, making the memory size to be the

limiting factor when using larger files.

14PABS 2018, Berlin, Germany, April 9

9. April 2018

Experimental Limitations

● File Creation Date Issue

○ It appeared that when all the streaming files were copied to the streaming directory

and had the same file creation or modification date, Spark considered these to be

the same file even if the files had different names (web-logs1, web-logs2, etc.).

● Files larger than 2GB and with more than 10 file streams should be investigated in future

research for potential bottlenecks and peak performance.

● Spark in Cluster mode should be tested and evaluated with the end-to-end BigBench

execution.

15PABS 2018, Berlin, Germany, April 9

9. April 2018

Lessons Learned

● Pros

○ Simple programing model and streaming API

○ Several built-in metrics

○ Several extraction and sink options for metrics

○ Possible to run queries in parallel

● Cons

○ Undocumented trigger process

○ Query limitations due to streaming API (Syntax)

○ Complicated metric extraction process

16PABS 2018, Berlin, Germany, April 9

9. April 2018

Future Work

● Extend the benchmark with more queries and implementations on other engines (Flink,

Samza, etc.).

● Build automated benchmark kit with all executable components (as part of ABench).

● Perform experiments with larger file sizes on multi-node Spark cluster.

17PABS 2018, Berlin, Germany, April 9

9. April 2018

Thank you for your attention!

9. April 2018

References

[1] Ahmad Ghazal, Todor Ivanov, Pekka Kostamaa, Alain Crolotte, Ryan Voong, Mohammed

Al-Kateb, Waleed Ghazal, and Roberto V. Zicari. 2017. BigBench V2: The New and

Improved BigBench. In ICDE 2017, San Diego, CA, USA, April 19-22.

[2] Ahmad Ghazal, Tilmann Rabl, Minqing Hu, Francois Raab, Meikel Poess, Alain Crolotte,

and Hans-Arno Jacobsen. 2013. BigBench: Towards An Industry Standard Benchmark for

Big Data Analytics. In SIGMOD 2013. 1197–1208.

19PABS 2018, Berlin, Germany, April 9

