

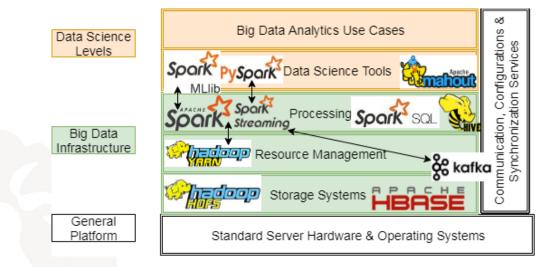
# ABench: Big Data Architecture Stack Benchmark [Vision Paper]

Todor Ivanov todor@dbis.cs.uni-frankfurt.de

Frankfurt Big Data Lab

GOETHE

Goethe University Frankfurt am Main, Germany http://www.bigdata.uni-frankfurt.de/ Rekha Singhal rekha.singhal@tcs.com




http://www.tcs.com

#### GOETHE UNIVERSITÄT FRANKFURT AM MAIN

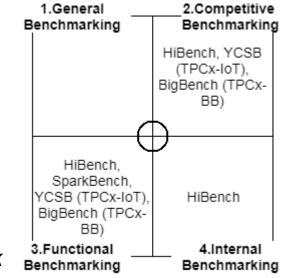
#### **Motivation**

Growing number of new *Big Data technologies* and *connectors* in the Big Data Stacks
→ Challenges for Solution Architects, Data Engineers, Data Scientist, Developers, etc.

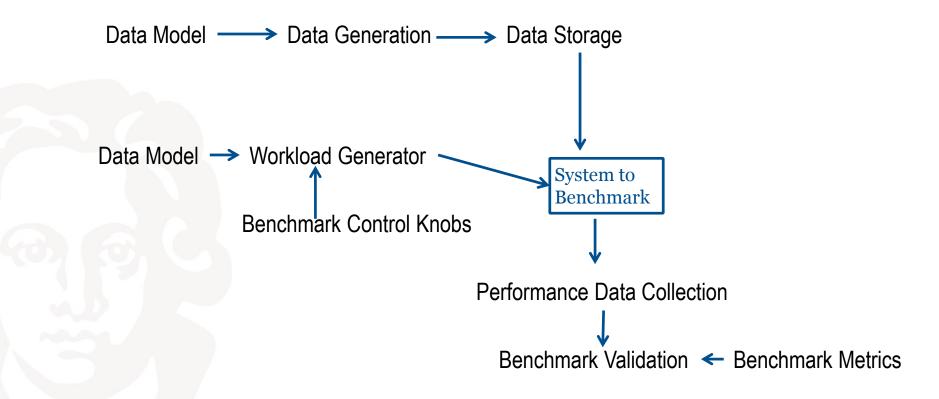


- Missing benchmarks for *each technology*, *connector* or a *combination of them*
- Consequence → Increasing complexity in the Big Data Architecture Stacks
- Our approach → ABench: Big Data Architecture Stack Benchmark




#### ABench Features

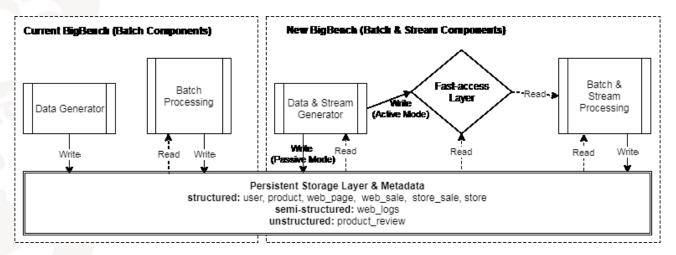
- Benchmark Framework
  - Data generators or plugins for custom data generators
  - Include data generator or public data sets to simulate workload that stresses the architecture
- Reuse of existing benchmarks
  - Case study using BigBench (in the next slides, Streaming and Machine Learning)
- Open source implementation and extendable design
- Easy to setup and extend
- Supporting and combining all four types of benchmarks in ABench


### Benchmarks Types (adapted from Andersen and Pettersen [1])

- 1. Generic Benchmarking: checks whether an implementation fulfills given business requirements and specifications (*Is the defined business specification implemented accurately?*).
- 2. Competitive Benchmarking: is a *performance comparison* between the best tools on the platform layer that offer similar functionality (*e.g., throughput of MapReduce vs. Spark vs. Flink*).
- **3.** Functional Benchmarking is a *functional comparison* of the features of the tool against technologies from the same area. (*e.g., Spark Streaming vs. Spark Structured Streaming vs. Flink Streaming*).
- **4.** Internal Benchmarking: <u>comparing different implementations</u> of a functionality (e.g., Spark Scala vs. Java vs. R vs. PySpark)












#### Stream Processing Benchmark – Use Case

- Adding stream processing to BigBench [2,3]
- Reuse of the web click logs in JSON format from BigBench V2 [3]
- Adding new streaming workloads
  - possibility to execute the queries on a subset of the incoming stream of data
- Provide benchmark implementations based on Spark Streaming and Kafka



• Work In-progress: Exploratory Analysis of Spark Structured Streaming, @PABS 2018, Todor Ivanov and Jason Taaffe

6. April 2018 ICPE 2018, Berlin, Germany, April 9-13



#### Machine Learning Benchmark – Use Case

- Expanding the type of Machine Learning workloads in BigBench [2]
  - five (Q5, Q20, Q25, Q26 and Q28) out of the 30 queries cover common ML algorithms
- Proposal by Sweta Singh (IBM)[4] for new workload with Collaborative Filtering using Matrix Factorization implementation in Spark MLlib via the Alternating Least Squares (ALS)
- Other types of advanced analytics inspired by Gartner [5]:
  - descriptive analytics
  - diagnostic analytics
  - predictive analytics
  - prescriptive analytics
- Introduce new ML metrics for scalability and accuracy



#### **Next Steps**

- Building express version of the benchmark framework
- Provide open source implementation of the Use Case benchmarks to stress test the existing Big Data Architecture Stacks
- Enable the comparison of the most popular technologies (e.g., Kafka, Spark, etc.)



## Thank you for your attention!

This research has been supported by the Research Group of the Standard Performance Evaluation Corporation (SPEC).

6. April 2018 ICPE 2018, Berlin, Germany, April 9-13

9



#### REFERENCES

[1] Bjørn Andersen and P-G Pettersen. 1995. Benchmarking handbook. Champman & Hall.

- [2] Ahmad Ghazal, Todor Ivanov, Pekka Kostamaa, Alain Crolotte, Ryan Voong, Mohammed Al-Kateb, Waleed Ghazal, and Roberto V. Zicari. 2017. BigBench V2: The New and Improved BigBench. In ICDE 2017, San Diego, CA, USA, April 19-22.
- [3] Ahmad Ghazal, Tilmann Rabl, Minqing Hu, Francois Raab, Meikel Poess, Alain Crolotte, and Hans-Arno Jacobsen. 2013. BigBench: Towards An Industry Standard Benchmark for Big Data Analytics. In SIGMOD 2013. 1197–1208.
- [4] Sweta Singh. 2016. Benchmarking Spark Machine Learning Using BigBench. In 8th TPC Technology Conference, TPCTC 2016, New Delhi, India, September 5-9, 2016.

[5] Gartner 2017, https://www.gartner.com/doc/3471553/-planning-guide-data-analytics