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Technical Benchmarks in Databench Workflow

Business Benchmarks Technical Benchmarks

- WP2 WP1
T”\ Economic, Market and DataBench Framework

Business Analysis with Benchmarks and metrics

IDC

ANALYZE THE FUTURE

L

W P3
DataBen :h " oolbox

—
WP4
Evaluating Business Performance Technical Evaluation
with DataBench Toolbox using the DataBench Toolbox
POLITECNICO
MILANO 1863

WP6
Consensus Building,

Dissemination and Exploitation

[DC SINTEF

ANALYZE THE FUTURE

i

SINTEF

Frankfurt Big Data L

1 Information Systems (DB

. 1JS

f_::b




Holistic benchmarking approach for big data

e The DataBench Toolbox will be a component-based system of both vertical (holistic/business/data type driven)
and horizontal (technical area based) big data benchmarks. following the layered architecture provide by the
BDVA reference model.

Not reinventing the wheel, but use wheels to build a new car

e It should be able to work or integrate with existing benchmarking initiatives and resources where possible.

Filling gaps

e The Toolbox will investigate gaps of industrial significance in the big data benchmarking field and contribute to
overcome them.

Homogenising metrics

e The Toolbox will implement ways to derive as much as possible the DataBench technical metrics and business
KPIs from the metrics extracted from the integrated benchmarking.

Web user interface

e |t will include a web-based visualization layer to assist to the final users to specify their benchmarking
requirements, such as selected benchmark, data generators, workloads, metrics and the preferred data, volume
and velocity, as well as searching and monitoring capabilities.

Goals & Objectives
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Dimensions of Technical Benchmarks
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Some of the benchmarks to integrate (l)

Micro-benchmarks:

Ve Name Lt

2010 HiBench
2015 SparkBench
2010 Yahoo! Cloud System

Benchmark (YSCB)

2017 TPCx-loT

Big data benchmark suite for evaluating different big data frameworks. 19
workloads including synthetic micro-benchmarks and real-world applications from
6 categories which are micro, machine learning, sql, graph, websearch and
streaming.

System for benchmarking and simulating Spark jobs. Multiple workloads
organized in 4 categories.

Evaluates performance of different “key-value” and “cloud” serving systems,
which do not support the ACID properties. The YCSB++ , an extension, includes
many additions such as multi-tester coordination for increased load and eventual
consistency measurement.

Based on YCSB, but with significant changes. Workloads of data ingestion and
concurrent queries simulating workloads on typical loT Gateway systems. Dataset
with data from sensors from electric power station(s)
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Some of the benchmarks to integrate (Il)

Application-oriented benchmarks:

Ve Name e

2015 Yahoo Streaming
Benchmark (YSB)

2013 BigBench/TPCx-BB

2017 BigBench V2

2018 ABench (Work-in-
Progress)

The Yahoo Streaming Benchmark is a streaming application benchmark
simulating an advertisement analytics pipeline.

BigBench is an end-to-end, technology agnostic, application-level
benchmark that tests the analytical capabilities of a Big Data platform. It is
based on a fictional product retailer business model.

Similar to BigBench, BigBench V2 is an end-to-end, technology agnostic,
application-level benchmark that tests the analytical capabilities of a Big
Data platform

New type of multi-purpose Big Data benchmark covering many big data
scenarios and implementations. Extends other benchmarks such as
BigBench
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BIGBENCH

= The BigBench specification comprises

two key components:
= a data model specification

= a workload/query specification.

= The structured part of the BigBench data

model is adopted from the
model

= The data model specification is

data

The BigBench data model

http://blog.cloudera.com/blog/2014/11/bigbench-toward-an-industry-standard-benchmark-for-big-data-analytics/

The BigBench 2.0 overview

implemented by a data generator, which

1s based on an extension of
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THE HOBBIT PLHTFORM Evaluation -] Benehmark . Reposito User
Module Controller posttory Management

= Benchmark any step of the Linked Data - — omtform |
lifecycle i Siage G;Zf_:tor Gel::zrt-ztor J Controller | ——| FrontEnd
= Ensure that benchmarking results can be : " X
found, accessed, integrated and reused \ :
ea.Si].Y (PA.IR prinCipleS) Benchmarked System @ T | Analysis
» Benchmark Big Data platforms by being the Slorage
first distributed benchmarking platform for _ — dataflow
Linked data_ PIlIlClp].eS: = creates component
* Users can test systems with the HOBBIT
= The Hobbit platform comprises several benchmarks without having to worry about
components: finding standardized hardware
= Single components are implemented as « New benchmarks can be easily created and

independent containers.

= Communication between these components is
. [ ]
done via a message bus.

added to the platform by third parties.

The evaluation can be scaled out to large datasets

and on distributed architectures.

« Everything is dockerized, from the * The publishing and analysis of the results of
benchmarked system to all the components different systems can be carried out in a uniform

manner across the different benchmarks.



Summary

e DataBench:
* A framework for big data benchmarking for PPP projects and big data practitioners
* We will provide methodology and tools

 Added value:

* An umbrella to access to multiple benchmarks
* Homogenized technical metrics

* Derived business KPIs,

A community around

* PPP projects, industrial partners (BDVA and beyond) and benchmarking initiatives are
welcomed to work with us, either to use our framework or to add new benchmarks



Big Data Benchmark session at EBDVF'2018

19/10/2018

Monday November 12th, 1700 — 1830,EBDVF'2018, Vienna

17.00 - 17.05 Introduction - Arne Berre/Axel Ngonga

17.05 - 1720 Designing Big Data Benchmarks - Inni Fundulaki

17.20 - 17.35 LDBC - Peter Boncz

17.35 - 17.50 DataBench - Gabriella Cattaneo/Tomas P. Lobo

17.50 - 18.05 Holistic Benchmarking - Axel Ngonga/Gayane Sedrakyan

18.05 - 18.15 Using HOBBIT for Industnial applications - Pavel Smirnov (AGT)
18.15 - 18.25 The EU Big Data Inducement price challenge - Kimmo Rossi (EC)

18.25 - 18.30 Summary and discussion

DataBench Project - GA Nr 780966
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